×

Quasi-idempotent Rota-Baxter operators arising from quasi-idempotent elements. (English) Zbl 1361.16027

Summary: In this short note, we construct quasi-idempotent Rota-Baxter operators by quasi-idempotent elements and show that every finite dimensional Hopf algebra admits nontrivial Rota-Baxter algebra structures and tridendriform algebra structures. Several concrete examples are provided, including finite quantum groups and Iwahori-Hecke algebras.

MSC:

16T25 Yang-Baxter equations
16U99 Conditions on elements
16T05 Hopf algebras and their applications

References:

[1] Aguiar, M.: Prepoisson algebras. Lett. Math. Phys. 54, 263-277 (2000) · Zbl 1032.17038 · doi:10.1023/A:1010818119040
[2] Aguiar, M., Moreira, W.: Combinatorics of the free Baxter algebra. Electron. J. Combin. 13(1), 38, Research Paper 17 (2006, electronic) · Zbl 1085.05006
[3] An, H., Bai, C.: From Rota-Baxter algebras to pre-Lie algebras. J. Phys. A Math. Theor. 41, 015201 (2008) · Zbl 1132.81031 · doi:10.1088/1751-8113/41/1/015201
[4] Cartier, P.: On the structure of free Baxter algebras. Adv. Math. 9, 253-265 (1972) · Zbl 0267.60052
[5] Baxter, G.: An analytic problem whose solution follows from a simple algebraic identity. Pac. J. Math. 10, 731-742 (1960) · Zbl 0095.12705 · doi:10.2140/pjm.1960.10.731
[6] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. I. The Hopf algebra structure of graphs and the main theorem. Commun. Math. Phys. 210, 249-273 (2000) · Zbl 1032.81026 · doi:10.1007/s002200050779
[7] Connes, A., Kreimer, D.: Renormalization in quantum field theory and the Riemann-Hilbert problem. II. The \[\beta\] β-function, diffeomorphisms and the renormalization group. Commun. Math. Phys. 216, 215-241 (2001) · Zbl 1042.81059 · doi:10.1007/PL00005547
[8] Ebrahimi-Fard, K.: Loday-type algebras and the Rota-Baxter relation. Lett. Math. Phys. 61, 139-147 (2002) · Zbl 1035.17001 · doi:10.1023/A:1020712215075
[9] Ebrahimi-Fard, K., Gracia-Bondia, J.M., Patras, F.: Rota-Baxter algebras and new combinatorial identities. Lett. Math. Phys. 81, 61-75 (2007) · Zbl 1121.05008 · doi:10.1007/s11005-007-0168-9
[10] Ebrahimi-Fard, K., Guo, L.: Rota-Baxter algebras and dendriform algebras. J. Pure Appl. Algebra 212, 320-339 (2008) · Zbl 1132.16032 · doi:10.1016/j.jpaa.2007.05.025
[11] Ebrahimi-Fard, K., Guo, L., Kreimer, D.: Spitzer’s identity and the algebraic birkhoff decomposition in pQFT. J. Phys. A Math. Gen. 37, 11037-11052 (2004) · Zbl 1062.81113 · doi:10.1088/0305-4470/37/45/020
[12] Ebrahimi-Fard, K., Guo L., Kreimer, D.: Integrabel renormalization II: the general case. Ann. H. Poincar \[\acute{e}\] e´6, 369-395 (2005) · Zbl 1077.81052
[13] Ebrahimi-Fard, K., Manchon, D., Patras, F.: A noncommutative Bohnenblust-Spitzer identity for Rota-Baxter algebras solves Bogoliubov’s recursion. J. Noncommut. Geom. 3, 181-222 (2009) · Zbl 1171.81412
[14] Guo, L.: Properties of free Baxter algebras. Adv. Math. 151, 346-374 (2000) · Zbl 0964.16028 · doi:10.1006/aima.1999.1898
[15] Guo, L.: An introduction to Rota-Baxter algebras, Surveys of Modern Mathematics, vol. 4. Higher Education Press, China (2012) · Zbl 1271.16001
[16] Guo, L., Keigher, W.: Baxter algebras and shuffle products. Adv. Math. 150, 117-149 (2000) · Zbl 0947.16013 · doi:10.1006/aima.1999.1858
[17] Humphreys, J.E.: Reflection groups and Coxeter groups, Cambridge Studies in Advanced Mathematics, 29. Cambridge University Press, Cambridge (1990) · Zbl 0725.20028 · doi:10.1017/CBO9780511623646
[18] Jian, R.-Q.: Construction of Rota-Baxter algebras via Hopf module algebras. Sci. China Math. 57, 2321-2328 (2014) · Zbl 1316.16023
[19] Kassel, C.: Quantum groups, Graduate Texts in Mathematics, vol. 155. Springer-Verlag, New York (1995) · Zbl 0808.17003
[20] Kazhdan, D., Lusztig, G.: Representations of Coxeter groups and Hecke algebras. Invent. Math. 53, 165-184 (1979) · Zbl 0499.20035 · doi:10.1007/BF01390031
[21] Loday, J.-L., Ronco, M.: Trialgebras and families of polytopes. In: Homotopy Theory: Relations with Algebraic Geometry, Group Cohomology, and Algebraic K-theory. Contemp. Math. vol. 346, pp. 369-398 (2004) · Zbl 1065.18007
[22] Lusztig, G.: Finite-dimensional Hopf algebras arising from quantized universal enveloping algebra. J. Am. Math. Soc. 3, 257-296 (1990) · Zbl 0695.16006
[23] Lusztig, G.: Quantum groups at roots of 1. Geom. Dedic. 35, 89-113 (1990) · Zbl 0714.17013 · doi:10.1007/BF00147341
[24] Radford, D.E.: Hopf algebras, Series on Knots and Everything, vol. 49. World Scientific, Singapore (2012) · Zbl 1266.16036
[25] Rota, G.-C.: Baxter algebras and combinatorial identities I, II. Bull. Am. Math. Soc. 75(325-329), 330-334 (1969) · Zbl 0319.05008 · doi:10.1090/S0002-9904-1969-12158-0
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.