×

Factorization of \(p\)-adic Rankin \(L\)-series. (English) Zbl 1361.11076

The main result of this important paper is a factorization formula for the \(p\)-adic \(L\)-function of the tensor square of a \(p\)-ordinary modular form as the product of the symmetric square \(p\)-adic \(L\)-function of the modular form and the Kubota-Leopoldt \(p\)-adic \(L\)-function; this result can be seen as a \(p\)-adic analogue of the well-known factorization of the corresponding complex analytic objects. Let \(f\in S_k(\Gamma_1(N_f),\chi)\) be a normalized cuspidal eigenform of level \(N_f\), character \(\chi\) and weight \(k\). Let \(\psi\) be a Dirichlet character of level \(N_\psi\). We have then an equality of complex \(L\)-series \[ L(f\otimes f\otimes\psi,s)=L(\mathrm{Sym}^2f\otimes\psi,s)\cdot L(\chi\cdot\psi,s-k+1). \] Let now \(p\) be a prime which does not divide \(N_\psi\). The \(p\)-adic object corresponding to the complex ones considered above have been defined by H. Hida [in: Automorphic forms, Shimura varieties, and \(L\)-functions. Vol. II, Proc. Conf., Ann Arbor/MI (USA) 1988, Perspect. Math. 11, 95–142 (1990; Zbl 0705.11033)] (that defined \(L_p(f\otimes f\otimes\psi,\sigma)\) for \(\sigma\in\mathcal{W}=\mathrm{Hom}_{\mathrm{cont}}(\mathbb{Z}_p^\times,\mathbb{C}_p^\times)\) interpolating the complex \(L\)-series \(L(f\otimes f\otimes\psi,s)\) for suitable choices of \(\sigma\) and \(s\)), by Schmidt-Hida (that defined \(L_p(\mathrm{Sym}^2f\otimes\psi,\sigma))\) and Kubota-Loepoldt. The main result of the paper reads as a factorization of the \(p\)-adic analytic objects which looks formally equal to the complex case: \[ L_p(f\otimes f\otimes\psi,\sigma)=L_p(\mathrm{Sym}^2f\otimes\psi,\sigma)\cdot L_p(\chi'\cdot\psi,z\cdot\sigma/\kappa) \] where \(\chi=\chi'\chi\) is the decomposition of \(\chi\) into its prime to \(p\) factor \(\chi'\) and its \(p\)-power factor \(\chi_p\), \(\kappa\in\mathcal{W}\) is defined by \(\kappa(z)=z^k\chi_p(z)\) and \(\sigma\), \(\psi\) satisfy the condition \(\sigma(-1)=-\psi(-1)\) (the last condition can be removed if \(p\nmid N_f\)). The author remarkably applies this factorization to obtain the proof of Greenberg’s exceptional zero conjecture for the adjoint \(p\)-adic \(L\)-function.
The strategy for proving such a result is quite interesting. The first step is to put \(f\) in a Hida family (for which one needs the ordinary assumption), and consider \(2\)-variable analogues of the \(1\)-variable objects considered above, in which now the variables are \(\sigma\in\mathcal{W}\) as above and the weight variable \(\kappa\in\mathcal{W}\); the factorization formula is then a consequences of a more general factorization formula involving these two variable analogues. The advantage of this second factorization formula is that there is a set of \(p\)-adically dense points which can be used to check, via specializations, the factorization formula, and then extend it to all points (including the point we are actually interested in for the \(1\)-variable factorization formula) by a density argument. The second step consists then in the use of recent work of Bertolini-Darmon-Rotger [M. Bertolini et al., J. Algebr. Geom. 24, No. 2, 355–378 (2015; Zbl 1325.14034); ibid. 24, No. 3, 569–604 (2015; Zbl 1328.11073)] and Lei-Loeffler-Zerbes [A. Lei et al., Ann. Math. (2) 180, No. 2, 653–771 (2014; Zbl 1315.11044)] which express these specializations of the \(2\)-variable analogue of \(L_p(f\otimes f\otimes\psi,\sigma)\) in terms of the \(p\)-adic logarithm \(\log_p(b_{f,\psi,\beta})\) of certain \(p\)-adic numbers \(b_{f,\psi,\beta}\in U_\eta=(\mathcal{O}_K^\times\otimes\bar{\mathbb{Q}})^{\eta^{-1}}\), called Beilinson-Flach units, coming from arithmetic intersection theory of algebraic cycles on the product of two modular curves (here, to fill the notation, \(\eta=\chi\psi\alpha\beta^{-1}\), where \(\alpha\) and \(\beta\) are auxiliary Dirichlet characters of \(p\)-power conductor having the same parity of \(\chi\) and \(\psi\) respectively, and \(K\) is the real cyclotomic field cut out by the even character \(\eta\)). With this in hand, exploiting the interpolation formula of the symmetric square \(p\)-adic \(L\)-function in two variables, the factorization formula reduces to show that the Beilinson-Flach units \(b_{f,\psi,\beta}\) compute the algebraic special values \(\frac{L(\mathrm{Sym}^2f,\beta^{-1},1)}{\text{period}}\) in the \(\bar{\mathbb{Q}}\)-vector spaces \(U_\eta\), which is the third step of the proof (here and in the following in the denominator we indicate by “\(\text{period}\)” a suitable complex number that makes the quotient algebraic). This third step is archived by exploiting the interpolation properties of the \(p\)-adic \(L\)-series considered, and the factorization formula satisfied by the correspoding complex \(L\)-series. More precisely, one first uses the factorization of complex \(L\)-series to obtain the formula \[ \frac{L'(f\otimes f\otimes\psi\beta^{-1},1)}{\text{period}} \overset{\cdot}{=} L(\mathrm{Sym}^2f\otimes\psi\beta^{-1},1)\cdot L'(\eta,0) \] where here and in the following we indicate by \(\overset{\cdot}{=}\) an equality which holds up to explicit algebraic factors. One the one hand, \(L'(\eta,0)\) is computed by the Dirichlet class number formula. Further, combining Beilinson regulator formula and a general compatibility result involving the Archimedean regulator, the cycle class map and intersection pairing, one shows the formula \[ \frac{L'(f\otimes f\otimes\psi\beta^{-1},1)}{\text{period}} \overset{\cdot}{=} \log_\infty (b_{f,\psi,\beta}) \] where \(\log_\infty\) is the usual Archimedean logarithm. Combining this (and using that \(U_\eta\) is a \(1\)-dimensional \(\bar{\mathbb{Q}}\)-vector space on which \(\log_\infty\) is injective) one obtains the sough for relation between \(b_{f,\psi,\beta}\) and \(\frac{L(\mathrm{Sym}^2f,\beta^{-1},1)}{\text{period}}\), thus concluding the proof.

MSC:

11S40 Zeta functions and \(L\)-functions
11F66 Langlands \(L\)-functions; one variable Dirichlet series and functional equations
19F27 Étale cohomology, higher regulators, zeta and \(L\)-functions (\(K\)-theoretic aspects)
Full Text: DOI

References:

[1] Beilinson, A.: Higher regulators and values of \[L\] L-functions. In: Current Problems in Mathematics, vol. 24, pp. 181-238. Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow (1984)
[2] Bertolini, M., et. al.: \[p\] p-functions and Euler systems: a tale in two trilogies. Automorphic forms and Galois representations. In: London Mathematical Society Lecture Note Series, vol. 14. Cambridge University Press, Cambridge, UK
[3] Bertolini, M., Darmon, H., Rotger, V.: Beilinson-Flach elements and Euler systems I: syntomic regulators and p-adic Rankin L-series. J. Algebr. Geom. (2015, to appear) · Zbl 1325.14034
[4] Bertolini, M., Darmon, H., Rotger, V.: Beilinson-Flach elements and Euler systems II: the Birch and Swinnerton-Dyer conjecture for Hasse-Weil-Artin L-series (2015, preprint) · Zbl 1328.11073
[5] Besser, A.: On the Syntomic regulator for \[K_1\] K1 of a surface. Israel J. Math. 190, 1-38 (2012) · Zbl 1285.19001
[6] Besser, A., Loeffler, D., Zerbes, S.: Finite polynomial cohomology for general varieties (2015, preprint). arXiv:1405.7527 · Zbl 1403.11052
[7] Bloch, S.: Algebraic cycles and higher \[KK\]-theory. Adv. in Math. 61 (1986), no. 3, 267-304 · Zbl 0608.14004
[8] Bloch, S.: Algebraic cycles and the Beilinson conjecture. In: The Lefschetz centennial conference, Part I (Mexico City, 1984), pp. 65-79. Contemp. Math., vol. 58. Amer. Math. Soc., Providence (1986) · Zbl 1369.11085
[9] Bloch, S., Kato, \[K.: L\] L-functions and Tamagawa numbers of motives. The Grothendieck Festschrift, edn I, pp. 333-400. Progr. Math., vol. 86. Birkhäuser Boston, Boston (1990) · Zbl 0768.14001
[10] Citro, \[C.: L\] L-invariants of adjoint square Galois representations coming from modular forms. Int. Math. Res. Not. IMRN, no. 14 (2008) · Zbl 1218.11054
[11] Colliot-Thélène, J.L., Raskind, W.: Groupe de Chow de codimension deux des variétés définies sur un corps de nombres: un théoréme de finitude pour la torsion. Invent. Math. 105(2), 221-245 (1991) · Zbl 0752.14004 · doi:10.1007/BF01232266
[12] Colmez, P.: Fonctions \[L\] L-adiques. Séminaire Bourbaki, vol. 1998/99. Astérisque No. 266. Exp. No. 851, 3, pp. 21-58 (2000) · Zbl 0781.14022
[13] Conrad, B.: More examples. http://math.stanford.edu/ conrad/papers/moreexample.pdf
[14] Darmon, H., Daub, M., Lichtenstein, S., Rotger, V.: Algorithms for Chow-Heegner points via iterated integrals. Math. Computat. 84, 2505-2547 (2015) · Zbl 1378.11059 · doi:10.1090/S0025-5718-2015-02927-5
[15] Darmon, H., Rotger, V.: Diagonal cycles and Euler systems I: a p-adic Gross-Zagier formula. Annales Scientifiques de l’École Normale Supérieure 47(4), 779-832 (2014) · Zbl 1356.11039
[16] Darmon, H., Rotger, V., Sols, I.: Iterated integrals, diagonal cycles, and rational points on elliptic curves. Publications Mathématiques de Besançon 2, 19-46 (2012) · Zbl 1332.11054
[17] Deninger, C., Scholl, A.: The Beilinson conjectures. In: “<InlineEquation ID=”IEq1087“> <EquationSource Format=”TEX“>\[L\] <EquationSource Format=”MATHML“> <math xmlns:xlink=”http://www.w3.org/1999/xlink“> L-functions and arithmetic.” (Durham, 1989), pp. 173-209. London Math. Soc. Lecture Note Ser., vol. 153. Cambridge Univ. Press, Cambridge (1991) · Zbl 1378.11059
[18] Esnault, H., Viehweg, E.: Deligne-Beilinson cohomology. In: Beilinson’s conjectures on special values of \[L\] L-functions, pp. 43-91. Perspect. Math., vol. 4. Academic Press, Boston (1988) · Zbl 0142.29804
[19] Faltings, G.: Crystalline cohomology and \[p\] p-adic Galois representations. In: Algebraic analysis, geometry, and number theory: proceedings of the JAMI inaugural conference
[20] Flach, M.: A finiteness theorem for the symmetric square of an elliptic curve. Invent. Math. 109(2), 307-327 (1992) · Zbl 0781.14022 · doi:10.1007/BF01232029
[21] Fontaine, J.-M., Messing, \[W.: p\] p-adic étale cohomology. In: Current trends in arithmetical algebraic geometry (Arcata, Calif., 1985), pp. 179-207. Contemp. Math., vol. 67. Amer. Math. Soc., Providence (1987) · Zbl 1369.11085
[22] Geisser, T., Levine, M.: The Bloch-Kato conjecture and a theorem of Suslin-Voevodsky. J. f.d. Reine u. Ang. Math 530, 55-103 (2001) · Zbl 1023.14003
[23] Greenberg, R.: Trivial zeros of \[p\] p-adic monodromy and the Birch and Swinnerton-Dyer conjecture (Boston, MA, 1991), pp. 149-174. Contemp. Math., vol. 165. Amer. Math. Soc., Providence (1994) · Zbl 0838.11070
[24] Gross, B.: On the factorization of p-adic L-series. Invent. Math. 57(1), 83-95 (1980) · Zbl 0472.12011 · doi:10.1007/BF01389819
[25] Harron, R.: \[L\] L-invariants of low symmetric powers of modular forms and Hida deformations. Ph.D. Thesis, Princeton University (2009)
[26] Harron, R.: The exceptional zero conjecture for symmetric powers of CM modular forms: the ordinary case. Int. Math. Res. Notices. 16, 3744-3770 (2013) · Zbl 1369.11085
[27] Hida, H.: p-adic L-functions for base change lifts of GL2 to GL3. In: Automorphic forms, Shimura varieties, and L-functions, vol. II (Ann Arbor, MI, 1988), 93142. Perspect. Math., vol. 11. Academic Press, Boston (1990) · Zbl 0656.10023
[28] Hida, H.: A \[p\] p-adic measure attached to the zeta functions associated with two elliptic modular forms, II. Ann. Inst. Fourier (Grenoble) 38(3), 1-83 (1988) · Zbl 0645.10028 · doi:10.5802/aif.1141
[29] Hida, H.: Greenberg’s \[L\] L-invariants of adjoint square Galois representations. Int. Math. Res. Not., no. 59, pp. 3177-3189 (2004) · Zbl 1081.11039
[30] Huber, A.: Realization of Voevodsky’s motives. J. Alg. Geom. 9(4), 755-799 (2000) · Zbl 0994.14014
[31] Kings, G., Loeffler, D., Zerbes, S.: Rankin-Selberg Euler systems and \[p\] p-adic interpolation. http://arxiv.org/abs/1405.3079 · Zbl 1428.11103
[32] Landsburg, S.: Relative Chow groups. Illinois J. Math. 34(4), 618-641 (1991) · Zbl 0746.19007
[33] Lei, A., Loeffler, D., Zerbes, S.: Euler systems for Rankin-Selberg convolutions of modular forms. Ann. Math. (2) 180(2), 653-771 (2014) · Zbl 1315.11044 · doi:10.4007/annals.2014.180.2.6
[34] Lewis, J.: Lectures on algebraic cycles. Bol. Soc. Mat. Mexicana. (3) 7(2), 137-192 (2001) · Zbl 1092.14013
[35] Nekovár, J.: Beilinson’s conjectures. In Motives (Seattle, WA, 1991), pp. 537-570. Proc. Sympos. Pure Math., vol. 55, Part 1. Amer. Math. Soc., Providence (1994) · Zbl 0799.19003
[36] Nekovár, J., Niziol, W.: Syntomic cohomology and regulators for varieties over \[p\] p-adic fields (2015, preprint) arXiv:1309.7620
[37] Niziol, W.: On the image of \[p\] p-adic regulators. Invent. Math. 127, 375-400 (1997) · Zbl 0928.14014 · doi:10.1007/s002220050125
[38] Ramachandra, K.: Some applications of Kronecker’s limit formulas. Ann. Math. (2) 80, 104-148 (1964) · Zbl 0142.29804 · doi:10.2307/1970494
[39] Rosso, G.: A formula for the derivative of the \[p\] p-function of the symmetric square of a finite slope modular form. arXiv:1310.6583 · Zbl 1351.11034
[40] Rosso, G.: Derivative at \[s=1\] s=1-function of the symmetric square of a Hilbert modular form. arXiv:1306.4935 · Zbl 1417.11077
[41] Saito, S., Sato, K.: A \[p\] p-adic regulator map and finiteness results for arithmetic schemes. Doc. Math., Extra volume: Andrei A. Suslin sixtieth birthday, pp. 525-594 (2010) · Zbl 1207.14015
[42] Schmidt, \[C.: p\] p -adic measures attached to automorphic representations of \[GL(3)\] GL(3). Invent. Math. 92(3), 597-631 (1988) · Zbl 0656.10023 · doi:10.1007/BF01393749
[43] Shimura, G.: On the periods of modular forms. Math. Ann. 229(3), 211-221 (1977) · Zbl 0363.10019 · doi:10.1007/BF01391466
[44] Tsuji, T.: Semi-stable conjecture of Fontaine-Jannsen: a survey. In: Cohomologies \[p\] p-adique et applications arithmétiques. II. Astérisque, vol. 279, pp. 323-370 (2002) · Zbl 1041.14003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.