×

A theoretical study on the role of astrocytic activity in neuronal hyperexcitability by a novel neuron-glia mass model. (English) Zbl 1360.92027

Summary: Recent experimental evidence on the clustering of glutamate and GABA transporters on astrocytic processes surrounding synaptic terminals pose the question of the functional relevance of the astrocytes in the regulation of neural activity. In this perspective, we introduce a new computational model that embeds recent findings on neuron-astrocyte coupling at the mesoscopic scale intra- and inter-layer local neural circuits. The model consists of a mass model for the neural compartment and an astrocyte compartment which controls dynamics of extracellular glutamate and GABA concentrations. By arguments based on bifurcation theory, we use the model to study the impact of deficiency of astrocytic glutamate and GABA uptakes on neural activity. While deficient astrocytic GABA uptake naturally results in increased neuronal inhibition, which in turn results in a decreased neuronal firing, deficient glutamate uptake by astrocytes may either decrease or increase neuronal firing either transiently or permanently. Given the relevance of neuronal hyperexcitability (or lack thereof) in the brain pathophysiology, we provide biophysical conditions for the onset identifying different physiologically relevant regimes of operation for astrocytic uptake transporters.

MSC:

92C20 Neural biology

References:

[1] Araque A, Parpura V, Sanzgiri RP, Haydon PG. Glutamate-dependent astrocyte modulation of synaptic transmission between cultured hippocampal neurons. Eur J Neurosci. 1998;10(6):2129-42. · doi:10.1046/j.1460-9568.1998.00221.x
[2] Parpura V, Haydon PG. Physiological astrocytic calcium levels stimulate glutamate release to modulate adjacent neurons. Proc Natl Acad Sci USA. 2000;97(15):8629-34. · doi:10.1073/pnas.97.15.8629
[3] Bazargani N, Attwell D. Astrocyte calcium signaling: the third wave. Nat Neurosci. 2016;19(2):182-9. · doi:10.1038/nn.4201
[4] De Pittà M, Brunel N, Volterra A. Astrocytes: orchestrating synaptic plasticity? Neuroscience. 2016;323:43-61. · doi:10.1016/j.neuroscience.2015.04.001
[5] Arizono M, Bannai H, Nakamura K, Niwa F, Enomoto M, Matsu-ura T, Miyamoto A, Sherwood MW, Nakamura T, Mikoshiba K. Receptor-selective diffusion barrier enhances sensitivity of astrocytic processes to metabotropic glutamate receptor stimulation. Sci Signal. 2012;5(218):ra27. · doi:10.1126/scisignal.2002498
[6] Sarup, A.; Bonde, C.; Zimmer, J.; Danbolt, N.; Schousboe, A.; Gegelashvili, G., Expression and dynamic regulation of glutamate transporters GLT1 and GLAST in primary astroglial and hippocampal slice cultures: effects of oxygen/glucose deprivation (OGD) and GDNF, 65-66 (2002), New York
[7] Schousboe A, Madsen KK, White HS. GABA transport inhibitors and seizure protection: the past and future. Future Med Chem. 2011;3(2):183-7. · doi:10.4155/fmc.10.288
[8] Wang D, Bordey A. The astrocyte odyssey. Prog Neurobiol. 2008;86(4):342-67.
[9] Murphy-Royal C, Dupuis JP, Varela JA, Panatier A, Pinson B, Baufreton J, Groc L, Oliet SH. Surface diffusion of astrocytic glutamate transporters shapes synaptic transmission. Nat Neurosci. 2015;18(2):219-26. · doi:10.1038/nn.3901
[10] Huang YH, Sinha SR, Tanaka K, Rothstein JD, Bergles DE. Astrocyte glutamate transporters regulate metabotropic glutamate receptor-mediated excitation of hippocampal interneurons. J Neurosci. 2004;24(19):4551-9. · doi:10.1523/JNEUROSCI.5217-03.2004
[11] Tzingounis AV, Wadiche JI. Glutamate transporters: confining runaway excitation by shaping synaptic transmission. Nat Rev Neurosci. 2007;8(12):935-47. · doi:10.1038/nrn2274
[12] Nadkarni S, Jung P. Modeling synaptic transmission of the tripartite synapse. Phys Biol. 2007;4(1):1-9. · doi:10.1088/1478-3975/4/1/001
[13] Postnov DE, Koreshkov RN, Brazhe NA, Brazhe AR, Sosnovtseva OV. Dynamical patterns of calcium signaling in a functional model of neuron-astrocyte networks. J Biol Phys. 2009;35(4):425-45. · doi:10.1007/s10867-009-9156-x
[14] Postnov DE, Ryazanova LS, Sosnovtseva OV. Functional modeling of neural-glial interaction. Biosystems. 2007;89(1-3):84-91. · doi:10.1016/j.biosystems.2006.04.012
[15] Volman V, Bazhenov M, Sejnowski TJ. Computational models of neuron-astrocyte interaction in epilepsy. Front Comput Neurosci. 2012;6:58. · doi:10.3389/fncom.2012.00058
[16] Volman V, Ben-Jacob E, Levine H. The astrocyte as a gatekeeper of synaptic information transfer. Neural Comput. 2007;19(2):303-26. · Zbl 1121.92018 · doi:10.1162/neco.2007.19.2.303
[17] De Pittà M, Volman V, Berry H, Ben-Jacob E. A tale of two stories: astrocyte regulation of synaptic depression and facilitation. PLoS Comput Biol. 2011;7(12):1002293. · doi:10.1371/journal.pcbi.1002293
[18] Gruetter R, Seaquist ER, Ugurbil K. A mathematical model of compartmentalized neurotransmitter metabolism in the human brain. Am J Physiol: Endocrinol Metab. 2001;281(1):100-12.
[19] Silchenko AN, Tass PA. Computational modeling of paroxysmal depolarization shifts in neurons induced by the glutamate release from astrocytes. Biol Cybern. 2008;98(1):61-74. · Zbl 1149.92008 · doi:10.1007/s00422-007-0196-7
[20] Aubert A, Costalat R. A model of the coupling between brain electrical activity, metabolism, and hemodynamics: application to the interpretation of functional neuroimaging. NeuroImage. 2002;17(3):1162-81. · doi:10.1006/nimg.2002.1224
[21] Aubert A, Costalat R, Magistretti PJ, Pellerin L. Brain lactate kinetics: modeling evidence for neuronal lactate uptake upon activation. Proc Natl Acad Sci USA. 2005;102(45):16448-53. · doi:10.1073/pnas.0505427102
[22] Aubert A, Costalat R. Interaction between astrocytes and neurons studied using a mathematical model of compartmentalized energy metabolism. J Cereb Blood Flow Metab. 2005;25(11):1476-90. · doi:10.1038/sj.jcbfm.9600144
[23] Savin C, Triesch J, Meyer-Hermann M. Epileptogenesis due to glia-mediated synaptic scaling. J R Soc Interface. 2009;6(37):655-68. · doi:10.1098/rsif.2008.0387
[24] Volman V, Bazhenov M, Sejnowski TJ. Divide and conquer: functional segregation of synaptic inputs by astrocytic microdomains could alleviate paroxysmal activity following brain trauma. PLoS Comput Biol. 2013;9(1):1002856. · doi:10.1371/journal.pcbi.1002856
[25] Nadkarni S, Jung P. Synaptic inhibition and pathologic hyperexcitability through enhanced neuron-astrocyte interaction: a modeling study. J Integr Neurosci. 2005;4(2):207-26. · doi:10.1142/S0219635205000811
[26] Nunez PL, Silberstein RB. On the relationship of synaptic activity to macroscopic measurements: does co-registration of EEG with fMRI make sense? Brain Topogr. 2000;13(2):79-96. · doi:10.1023/A:1026683200895
[27] Keener JP, Sneyd J. Mathematical physiology. vol. 1. Berlin: Springer; 1998. · Zbl 0913.92009
[28] Touboul J, Wendling F, Chauvel P, Faugeras O. Neural mass activity, bifurcations, and epilepsy. Neural Comput. 2011;23(12):3232-86. · doi:10.1162/NECO_a_00206
[29] Garnier A, Vidal A, Huneau C, Benali H. A neural mass model with direct and indirect excitatory feedback loops: identification of bifurcations and temporal dynamics. Neural Comput. 2015;27:329-64. · Zbl 1414.92094 · doi:10.1162/NECO_a_00696
[30] Blanchard S, Saillet S, Ivanov A, Benquet P, Benar C, Pelegrini-Issac M, Benali H, Wendling F. A new computational model for neuro-glio-vascular coupling: astrocyte activation can explain cerebral blood flow nonlinear response to interictal events. PLoS ONE. 2016. doi:10.1371/journal.pone.0147292. · doi:10.1371/journal.pone.0147292
[31] Van Rotterdam A, Lopes da Silva FH, van den Ende J, Viergever M, Hermans A. A model of the spatial-temporal characteristics of the alpha rhythm. Bull Math Biol. 1982;44(2):283-305. · Zbl 0478.92005 · doi:10.1007/BF02463252
[32] Freeman W. Mass action in the nervous system. New York: Academic Press; 1975.
[33] Jansen BH, Zouridakis G, Brandt ME. A neurophysiologically-based mathematical model of flash visual evoked potentials. Biol Cybern. 1993;68(3):275-83. · doi:10.1007/BF00224863
[34] Braitenberg V, Schüz A. Cortex: statistics and geometry of neuronal connectivity. Berlin: Springer; 1998. · doi:10.1007/978-3-662-03733-1
[35] Jansen BH, Rit VG. Electroencephalogram and visual evoked potential generation in a mathematical model of coupled cortical columns. Biol Cybern. 1995;73(4):357-66. · Zbl 0827.92010 · doi:10.1007/BF00199471
[36] Molaee-Ardekani B, Márquez-Ruiz J, Merlet I, Leal-Campanario R, Gruart A, Sánchez-Campusano R, Birot G, Ruffini G, Delgado-García J-M, Wendling F. Effects of transcranial Direct Current Stimulation (tDCS) on cortical activity: a computational modeling study. Brain Stimul. 2013;6(1):25-39. · doi:10.1016/j.brs.2011.12.006
[37] Pittenger C, Bloch MH, Williams K. Glutamate abnormalities in obsessive compulsive disorder: neurobiology, pathophysiology, and treatment. Pharmacol Ther. 2011;132(3):314-32. · doi:10.1016/j.pharmthera.2011.09.006
[38] Hertz L, Rodrigues TB. Astrocytic-neuronal-astrocytic pathway selection for formation and degradation of glutamate/GABA. Lausanne: Frontiers E-books; 2014. · doi:10.3389/978-2-88919-243-4
[39] Patel AB, de Graaf RA, Mason GF, Rothman DL, Shulman RG, Behar KL. The contribution of GABA to glutamate/glutamine cycling and energy metabolism in the rat cortex in vivo. Proc Natl Acad Sci. 2005;102(15):5588-93. · doi:10.1073/pnas.0501703102
[40] Liang SL, Carlson GC, Coulter DA. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J Neurosci. 2006;26(33):8537-48. · doi:10.1523/JNEUROSCI.0329-06.2006
[41] Oberheim NA, Takano T, Han X, He W, Lin JH, Wang F, Xu Q, Wyatt JD, Pilcher W, Ojemann JG, Ransom BR, Goldman SA, Nedergaard M. Uniquely hominid features of adult human astrocytes. J Neurosci. 2009;29(10):3276-87. · doi:10.1523/JNEUROSCI.4707-08.2009
[42] Bushong EA, Martone ME, Jones YZ, Ellisman MH. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J Neurosci. 2002;22(1):183-92.
[43] Henneberger C, Papouin T, Oliet SH, Rusakov DA. Long-term potentiation depends on release of D-serine from astrocytes. Nature. 2010;463(7278):232-6. · doi:10.1038/nature08673
[44] Bellone C, Lüscher C, Mameli M. Mechanisms of synaptic depression triggered by metabotropic glutamate receptors. Cell Mol Life Sci. 2008;65(18):2913-23. · doi:10.1007/s00018-008-8263-3
[45] Niswender CM, Conn PJ. Metabotropic glutamate receptors: physiology, pharmacology, and disease. Annu Rev Pharmacol Toxicol. 2010;50:295-322. · doi:10.1146/annurev.pharmtox.011008.145533
[46] Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron. 2012;73(1):23-34. · doi:10.1016/j.neuron.2011.12.012
[47] Luscher B, Fuchs T, Kilpatrick CL. GABAA receptor trafficking-mediated plasticity of inhibitory synapses. Neuron. 2011;70(3):385-409. · doi:10.1016/j.neuron.2011.03.024
[48] Campbell SL, Hablitz JJ. Decreased glutamate transport enhances excitability in a rat model of cortical dysplasia. Neurobiol Dis. 2008;32(2):254-61. · doi:10.1016/j.nbd.2008.07.003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.