×

Bivariate Poisson models with varying offsets: an application to the paired mitochondrial DNA dataset. (English) Zbl 1360.92014

Summary: To assess the effect of chemotherapy on mitochondrial genome mutations in cancer survivors and their offspring, a study sequenced the full mitochondrial genome and determined the mitochondrial DNA heteroplasmic (mtDNA) mutation rate. To build a model for counts of heteroplasmic mutations in mothers and their offspring, bivariate Poisson regression was used to examine the relationship between mutation count and clinical information while accounting for the paired correlation. However, if the sequencing depth is not adequate, a limited fraction of the mtDNA will be available for variant calling. The classical bivariate Poisson regression model treats the offset term as equal within pairs; thus, it cannot be applied directly. In this research, we propose an extended bivariate Poisson regression model that has a more general offset term to adjust the length of the accessible genome for each observation. We evaluate the performance of the proposed method with comprehensive simulations, and the results show that the regression model provides unbiased parameter estimations. The use of the model is also demonstrated using the paired mtDNA dataset.

MSC:

92B15 General biostatistics
62P10 Applications of statistics to biology and medical sciences; meta analysis
92D10 Genetics and epigenetics

Software:

bivpois; DEGseq
Full Text: DOI

References:

[1] Andrews, R. M., I. Kubacka, P. F. Chinnery, R. N. Lightowlers, D. M. Turnbull and N. Howell (1999): “Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA,” Nat. Genet., 23, 147.; Andrews, R. M.; Kubacka, I.; Chinnery, P. F.; Lightowlers, R. N.; Turnbull, D. M.; Howell, N., Reanalysis and revision of the Cambridge reference sequence for human mitochondrial DNA, Nat. Genet, 23, 147 (1999)
[2] Bermúdez, L. and D. Karlis (2012): “A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking,” Comput. Stat. Data Anal., 56, 3988-3999.; Bermúdez, L.; Karlis, D., A finite mixture of bivariate Poisson regression models with an application to insurance ratemaking, Comput. Stat. Data Anal, 56, 3988-3999 (2012) · Zbl 1254.91264
[3] Famoye, F. (2010): “On the bivariate negative binomial regression model,” J. Appl. Stat., 37, 969-981.; Famoye, F., On the bivariate negative binomial regression model, J. Appl. Stat, 37, 969-981 (2010) · Zbl 1511.62176
[4] Guo, Y., Q. Cai, D. Samuels, F. Ye, J. Long, C. Li, J. Winther, E. J. Tawn, M. Stovall, P. Lähteenmäki, N. Malila, S. Levy, C. Shaffer, Y. Shyr, X. Shu, and J. Boice (2012): “The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation,” Mutat. Res., 744, 154-160.; Guo, Y.; Cai, Q.; Samuels, D.; Ye, F.; Long, J.; Li, C.; Winther, J.; Tawn, E. J.; Stovall, M.; Lähteenmäki, P.; Malila, N.; Levy, S.; Shaffer, C.; Shyr, Y.; Shu, X.; Boice, J., The use of next generation sequencing technology to study the effect of radiation therapy on mitochondrial DNA mutation, Mutat. Res, 744, 154-160 (2012)
[5] Johnson, N., S. Kotz, and N. Balakrishnan (1997): Discrete multivariate distributions, Wiley, New York.; Johnson, N.; Kotz, S.; Balakrishnan, N., Discrete multivariate distributions (1997) · Zbl 0868.62048
[6] Jung, R. and R. Winkelmann (1993): “Two aspects of labor mobility: a bivariate Poisson regression approach,” Empir. Econ., 18, 543-556.; Jung, R.; Winkelmann, R., Two aspects of labor mobility: a bivariate Poisson regression approach, Empir. Econ, 18, 543-556 (1993)
[7] Karlis, D. (2003): “An em algorithm for multivariate Poisson distribution and related models,” J. Appl. Stat., 30, 63-77.; Karlis, D., An em algorithm for multivariate Poisson distribution and related models, J. Appl. Stat, 30, 63-77 (2003) · Zbl 1121.62408
[8] Karlis, D. and L. Meligkotsidou (2005): “Multivariate Poisson regression with covariance structure,” Stat. Comput., 15, 255-265.; Karlis, D.; Meligkotsidou, L., Multivariate Poisson regression with covariance structure, Stat. Comput, 15, 255-265 (2005) · Zbl 1116.60006
[9] Karlis, D. and I. Ntzoufras (2005): “Bivariate Poisson and diagonal inflated bivariate Poisson regression models in r,” J. Stat. Softw., 14, 1-36.; Karlis, D.; Ntzoufras, I., Bivariate Poisson and diagonal inflated bivariate Poisson regression models in r, J. Stat. Softw, 14, 1-36 (2005) · Zbl 1098.62030
[10] Karlis, D. and L. Ntzoufras (2003): “Analysis of sports data by using bivariate Poisson models,” Statistician, 52, 381-393.; Karlis, D.; Ntzoufras, L., Analysis of sports data by using bivariate Poisson models, Statistician, 52, 381-393 (2003) · Zbl 1169.91420
[11] Kawamura, K. (1985): “A note on the recurrent relations for the bivariate Poisson distribution,” Kodai Math. J., 8, 70-78.; Kawamura, K., A note on the recurrent relations for the bivariate Poisson distribution, Kodai Math. J, 8, 70-78 (1985) · Zbl 0574.60024
[12] Kocherlakota, S. and K. Kocherlakota (2001): “Regression in the bivariate Poisson distribution,” Commun. Stat. Theory Methods, 30, 815-825.; Kocherlakota, S.; Kocherlakota, K., Regression in the bivariate Poisson distribution, Commun. Stat. Theory Methods, 30, 815-825 (2001) · Zbl 1008.62638
[13] McLachlan, G. and T. Krishnan (1997): The EM algorithm and extensions, Wiley, New York.; McLachlan, G.; Krishnan, T., The EM algorithm and extensions (1997) · Zbl 0882.62012
[14] Pakendorf, B. and M. Stoneking (2005): “Mitochondrial DNA and human evolution,” Annu. Rev. Genomics Hum. Genet., 6, 165-183.; Pakendorf, B.; Stoneking, M., Mitochondrial DNA and human evolution, Annu. Rev. Genomics Hum. Genet, 6, 165-183 (2005)
[15] Robinson, M. and A. Oshlack (2010): “A scaling normalization method for differential pression analysis of RNA-seq data,” Genome Biol., 11, R25.; Robinson, M.; Oshlack, A., A scaling normalization method for differential pression analysis of RNA-seq data, Genome Biol, 11, R25 (2010)
[16] Srivastava, S. and L. Chen (2010): “A two-parameter generalized Poisson model to improve the analysis of RNA-seq data,” Nucleic Acids Res., 38, e170.; Srivastava, S.; Chen, L., A two-parameter generalized Poisson model to improve the analysis of RNA-seq data, Nucleic Acids Res, 38, e170 (2010)
[17] Verma, M. and D. Kumar (2007): “Application of mitochondrial genome information in cancer epidemiology,” Clin. Chim. Acta, 383, 41-50.; Verma, M.; Kumar, D., Application of mitochondrial genome information in cancer epidemiology, Clin. Chim. Acta, 383, 41-50 (2007)
[18] Wang, L., Z. Feng, X. Wang, X. Wang, and X. Zhang (2010): “Degseq: an R package for identifying differentially expressed genes from RNA-seq data,” Bioinformatics, 26, 136-138.; Wang, L.; Feng, Z.; Wang, X.; Wang, X.; Zhang, X., Degseq: an R package for identifying differentially expressed genes from RNA-seq data, Bioinformatics, 26, 136-138 (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.