×

Portfolio optimization under convex incentive schemes. (English) Zbl 1360.91132

The paper considers the problem of optimizing the terminal wealth of a portfolio of assets from the perspective of the fund’s manager. The manager has his utility function \(U\), which fulfills standard assumptions (i.a. is concave) but is paid according to an incentive scheme \(g(W_T)\), which is a convex function of the terminal wealth. Consequently, the manager seeks to maximize the expected value of the function \(\bar{U}=U \circ g\), which is neither concave, nor convex.
The authors consider three problems with the following value functions: the initial problem \(u(x) = \sup E[\bar{U}(W_T)]\), the concavified problem \(w(x) = \sup E[\bar{U}^{**}(W_T)]\) and the dual problem \(v(x) = \inf E[\bar{U}^{*}(Y_T)]\), where \(\bar{U}^{*}\) is the convex conjugate of \(\bar{U}\), \(\bar{U}^{**}\) is the biconjugate (and concavification) and \(Y\) belongs to the set of dual processes to the processes of admissible wealth in the initial problem.
The main theorems of the article concern the existence and uniqueness of the solution to these three problems. The authors prove the existence of the dual problem and give a characterization of it using the set of local martingale measures. Moreover, they show that if the terminal value of the optimal solution to the dual problem, \(\hat{Y}_T\), has a continuous distribution, then there exists a unique solution to the concavified problem, and it coincides with the solution to the initial problem.
The authors consider the problem of optimizing terminal wealth in the standard one-dimensional Black-Scholes model and in several incomplete models: lognormal mixture model and models of stochastic volatility. They give conditions under which the assumption about the continuity of \(\hat{Y}_T\) is fulfilled.

MSC:

91G10 Portfolio theory
60H30 Applications of stochastic analysis (to PDEs, etc.)
93E20 Optimal stochastic control

References:

[1] Alòs, E., Ewald, C.-O.: Malliavin differentiability of the Heston volatility and applications to option pricing. Adv. Appl. Probab. 40, 144-162 (2008) · Zbl 1137.91422 · doi:10.1239/aap/1208358890
[2] Amendinger, J.: Martingale representation theorems for initially enlarged filtrations. Stoch. Process. Appl. 89, 101-116 (2000) · Zbl 1045.60038 · doi:10.1016/S0304-4149(00)00015-6
[3] Bogachev, V.I.: Measure Theory. Vol. I and II. Springer, Berlin (2007) · Zbl 1120.28001
[4] Bouchard, B., Touzi, N., Zeghal, A.: Dual formulation of the utility maximization problem: the case of nonsmooth utility. Ann. Appl. Probab. 14, 678-717 (2004) · Zbl 1126.91018 · doi:10.1214/105051604000000062
[5] Brannath, W.; Schachermayer, W.; Azéma, J. (ed.); Émery, M. (ed.); Ledoux, M. (ed.); Yor, M. (ed.), A bipolar theorem for [InlineEquation not available: see fulltext.], No. 1709, 349-354 (1999), Berlin · doi:10.1007/BFb0096525
[6] Brigo, D., Mercurio, F.: Interest Rate Models—Theory and Practice, 2nd edn. Springer Finance. Springer, Berlin (2006) · Zbl 1109.91023
[7] Carassus, L., Pham, H.: Portfolio optimization for piecewise concave criteria functions (the 8th workshop on stochastic numerics). RIMS Kokyuroku 1620, 81-108 (2009). Preprint. https://sites.google.com/site/lcarassus/recherches/publications. Ed.: Shigeyoshi Ogawa
[8] Carpenter, J.N.: Does option compensation increase managerial risk appetite? J. Finance 55, 2311-2331 (2000) · doi:10.1111/0022-1082.00288
[9] Deelstra, G., Pham, H., Touzi, N.: Dual formulation of the utility maximization problem under transaction costs. Ann. Appl. Probab. 11, 1353-1383 (2001) · Zbl 1012.60059 · doi:10.1214/aoap/1015345406
[10] Delbaen, F., Schachermayer, W.: The Mathematics of Arbitrage. Springer Finance. Springer, Berlin (2006) · Zbl 1106.91031
[11] Fouque, J.P., Papanicolaou, G., Sircar, R., Sølna, K.: Multiscale Stochastic Volatility for Equity, Interest Rate, and Credit Derivatives. Cambridge University Press, Cambridge (2011) · Zbl 1248.91003 · doi:10.1017/CBO9781139020534
[12] Guasoni, P., Obłój, J.K.: The incentives of hedge fund fees and high-water marks. Math. Finance (2014). doi:10.1111/mafi.12057 · Zbl 1348.91254
[13] Hiriart-Urruty, J.-B., Lemaréchal, C.: Fundamentals of Convex Analysis. Grundlehren Text Editions. Springer, Berlin (2001) · Zbl 0998.49001 · doi:10.1007/978-3-642-56468-0
[14] Janeček, K., Sîrbu, M.: Optimal investment with high-watermark performance fee. SIAM J. Control Optim. 50, 790-819 (2012) · Zbl 1248.91092 · doi:10.1137/100790884
[15] Karatzas, I., Lehoczky, J.P., Shreve, S.E.: Optimal portfolio and consumption decisions for a ’small investor’ on a finite horizon. SIAM J. Control Optim. 25, 1557-1586 (1987) · Zbl 0644.93066 · doi:10.1137/0325086
[16] Kramkov, D., Schachermayer, W.: The asymptotic elasticity of utility functions and optimal investment in incomplete markets. Ann. Appl. Probab. 9, 904-950 (1999) · Zbl 0967.91017 · doi:10.1214/aoap/1029962818
[17] Kramkov, D., Schachermayer, W.: Necessary and sufficient conditions in the problem of optimal investment in incomplete markets. Ann. Appl. Probab. 13, 1504-1516 (2003) · Zbl 1091.91036 · doi:10.1214/aoap/1069786508
[18] Larsen, K.: Optimal portfolio delegation when parties have different coefficients of risk aversion. Quant. Finance 5, 503-512 (2005) · Zbl 1134.91441 · doi:10.1080/14697680500305204
[19] Merton, R.C.: Optimum consumption and portfolio rules in a continuous-time model. J. Econ. Theory 3, 373-413 (1971) · Zbl 1011.91502 · doi:10.1016/0022-0531(71)90038-X
[20] Nualart, D.: The Malliavin Calculus and Related Topics. Probability and Its Applications. Springer, New York (1995) · Zbl 0837.60050 · doi:10.1007/978-1-4757-2437-0
[21] Ocone, D.L., Karatzas, I.: A generalized Clark representation formula, with application to optimal portfolios. Stoch. Stoch. Rep. 34, 187-220 (1991) · Zbl 0727.60070 · doi:10.1080/17442509108833682
[22] Panageas, S., Westerfield, M.M.: High-water marks: High risk appetites? Convex compensation, long horizons, and portfolio choice. J. Finance 64, 1-36 (2009) · doi:10.1111/j.1540-6261.2008.01427.x
[23] Pliska, S.R.: A stochastic calculus model of continuous trading: optimal portfolios. Math. Oper. Res. 11, 370-382 (1986) · Zbl 1011.91503 · doi:10.1287/moor.11.2.371
[24] Reichlin, C.: Utility maximization with a given pricing measure when the utility is not necessarily concave. Math. Financ. Econ. 7, 531-556 (2013) · Zbl 1277.91055 · doi:10.1007/s11579-013-0093-x
[25] Ross, S.A.: Compensation, incentives, and the duality of risk aversion and riskiness. J. Finance 59, 207-225 (2004) · doi:10.1111/j.1540-6261.2004.00631.x
[26] Seifried, F.T.: Optimal investment with deferred capital gains taxes: a simple martingale method approach. Math. Methods Oper. Res. 71, 181-199 (2010) · Zbl 1185.93150 · doi:10.1007/s00186-009-0291-8
[27] Siu, T.K.: Regime-switching risk: to price or not to price? Int. J. Stoch. Anal. 2011, 1-14 (2011) · Zbl 1230.91203 · doi:10.1155/2011/843246
[28] Westray, N., Zheng, H.: Constrained nonsmooth utility maximization without quadratic inf convolution. Stoch. Process. Appl. 119, 1561-1579 (2009) · Zbl 1159.93363 · doi:10.1016/j.spa.2008.08.002
[29] Westray, N., Zheng, H.: Minimal sufficient conditions for a primal optimizer in nonsmooth utility maximization. Finance Stoch. 15, 501-512 (2011) · Zbl 1302.93248 · doi:10.1007/s00780-010-0128-6
[30] Wong, B., Heyde, C.C.: On changes of measure in stochastic volatility models. J. Appl. Math. Stoch. Anal. 2006, 1-3 (2006) · Zbl 1147.60321 · doi:10.1155/JAMSA/2006/18130
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.