×

Time of flight of ultra-relativistic particles in a realistic Universe: a viable tool for fundamental physics? (English) Zbl 1360.83089

Summary: Including the metric fluctuations of a realistic cosmological geometry we reconsider an earlier suggestion that measuring the relative time-of-flight of ultra-relativistic particles can provide interesting constraints on fundamental cosmological and/or particle parameters. Using convenient properties of the geodetic light-cone coordinates we first compute, to leading order in the Lorentz factor and for a generic (inhomogeneous, anisotropic) space-time, the relative arrival times of two ultra-relativistic particles as a function of their masses and energies as well as of the details of the large-scale geometry. Remarkably, the result can be written as an integral over the unperturbed line-of-sight of a simple function of the local, inhomogeneous redshift. We then evaluate the irreducible scatter of the expected data-points due to first-order metric perturbations, and discuss, for an ideal source of ultra-relativistic particles, the resulting attainable precision on the determination of different physical parameters.

MSC:

83F05 Relativistic cosmology
83B05 Observational and experimental questions in relativity and gravitational theory

References:

[1] Zatsepin, G. T., JETP Lett., 8, 205 (1968)
[2] Stodolsky, L., Phys. Lett. B, 473, 61 (2000)
[3] Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G., J. Cosmol. Astropart. Phys., 07, Article 008 pp. (2011)
[4] Fleury, P.; Nugier, F.; Fanizza, G.
[5] Ben-Dayan, I.; Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G., J. Cosmol. Astropart. Phys., 04, Article 036 pp. (2012)
[6] Ben-Dayan, I.; Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G., Phys. Rev. Lett., 110, Article 021301 pp. (2013)
[7] Ben-Dayan, I.; Marozzi, G.; Nugier, F.; Veneziano, G., J. Cosmol. Astropart. Phys., 11, Article 045 pp. (2012)
[8] Ben-Dayan, I.; Gasperini, M.; Marozzi, G.; Nugier, F.; Veneziano, G., J. Cosmol. Astropart. Phys., 06, Article 002 pp. (2013)
[9] Fanizza, G.; Gasperini, M.; Marozzi, G.; Veneziano, G., J. Cosmol. Astropart. Phys., 11, Article 019 pp. (2013)
[10] Nugier, F.
[11] Ben-Dayan, I.; Durrer, R.; Marozzi, G.; Schwarz, D. J., Phys. Rev. Lett., 112, Article 221301 pp. (2014)
[12] Marozzi, G., Class. Quantum Gravity, 32, 179501 (2015) · Zbl 1332.83116
[13] Di Dio, E.; Durrer, R.; Marozzi, G.; Montanari, F., J. Cosmol. Astropart. Phys., 06, Article E01 pp. (2015)
[14] Fanizza, G.; Nugier, F., J. Cosmol. Astropart. Phys., 02, Article 002 pp. (2015)
[15] Fanizza, G.; Gasperini, M.; Marozzi, G.; Veneziano, G., J. Cosmol. Astropart. Phys., 08, Article 020 pp. (2015)
[16] Mukhanov, V. F.; Feldman, H. A.; Brandenberger, R. H., Phys. Rep., 215, 203 (1992)
[17] Durrer, R., The Cosmic Microwave Background (2008), Cambridge University Press: Cambridge University Press Cambridge, UK
[18] Eisenstein, D. J.; Hu, W., Astrophys. J., 496, 605 (1998)
[19] Olive, K. A., Chin. Phys. C, 38, Article 090001 pp. (2015)
[20] Smith, R. E., Mon. Not. R. Astron. Soc., 341, 1311 (2003)
[21] Takahashi, R.; Sato, M.; Nishimichi, T.; Taruya, A.; Oguri, M., Astrophys. J., 761, 152 (2012)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.