×

Two-dimensional lattice Gauge theories with superconducting quantum circuits. (English) Zbl 1360.81282

Summary: A quantum simulator of \(\mathrm{U}(1)\) lattice gauge theories can be implemented with superconducting circuits. This allows the investigation of confined and deconfined phases in quantum link models, and of valence bond solid and spin liquid phases in quantum dimer models. Fractionalized confining strings and the real-time dynamics of quantum phase transitions are accessible as well. Here we show how state-of-the-art superconducting technology allows us to simulate these phenomena in relatively small circuit lattices. By exploiting the strong non-linear couplings between quantized excitations emerging when superconducting qubits are coupled, we show how to engineer gauge invariant Hamiltonians, including ring-exchange and four-body Ising interactions. We demonstrate that, despite decoherence and disorder effects, minimal circuit instances allow us to investigate properties such as the dynamics of electric flux strings, signaling confinement in gauge invariant field theories. The experimental realization of these models in larger superconducting circuits could address open questions beyond current computational capability.

MSC:

81T80 Simulation and numerical modelling (quantum field theory) (MSC2010)
81T13 Yang-Mills and other gauge theories in quantum field theory
81T25 Quantum field theory on lattices

References:

[1] Nakamura, Y.; Pashkin, Yu. A.; Tsai, J. S., Nature, 398, 786 (1999)
[2] van der Wal, C. H.; ter Haar, A. C.J.; Wilhelm, F. K.; Schouten, R. N.; Harmans, C. J.P. M.; Orlando, T. P.; Lloyd, S.; Mooij, J. E., Science, 290, 773 (2000)
[3] Steffen, L.; Salathe, Y.; Oppliger, M.; Kurpiers, P.; Baur, M.; Lang, C.; Eichler, C.; Puebla-Hellmann, G.; Fedorov, A.; Wallraff, A., Nature, 500, 319 (2013)
[4] DiCarlo, L.; Chow, J. M.; Gambetta, J. M.; Bishop, L. S.; Johnson, B. R.; Schuster, D. I.; Majer, J.; Blais, A.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Nature, 460, 240 (2009)
[5] Lucero, E.; Barends, R.; Chen, Y.; Kelly, J.; Mariantoni, M.; Megrant, A.; OMalley, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Yin, Y.; Cleland, A. N.; Martinis, J. M., Nat. Phys., 8, 719 (2012)
[6] Mariantoni, M.; Wang, H.; Yamamoto, T.; Neeley, M.; Bialczak, R. C.; Chen, Y.; Lenander, M.; Lucero, E.; O’Connell, A. D.; Sank, D.; Weides, M.; Wenner, J.; Yin, Y.; Zhao, J.; Korotkov, A. N.; Cleland, A. N.; Martinis, J. M., Science, 334, 61 (2011)
[7] Fedorov, A.; Steffen, L.; Baur, M.; da Silva, M. P.; Wallraff, A., Nature, 481, 170 (2012)
[8] Reed, M. D.; DiCarlo, L.; Nigg, S. E.; Sun, L.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Nature, 482, 382 (2012)
[9] Paik, H.; Schuster, D. I.; Bishop, L. S.; Kirchmair, G.; Catelani, G.; Sears, A. P.; Johnson, B. R.; Reagor, M. J.; Frunzio, L.; Glazman, L. I.; Girvin, S. M.; Devoret, M. H.; Schoelkopf, R. J., Phys. Rev. Lett., 107, 240501 (2011)
[10] Rigetti, C.; Gambetta, J. M.; Poletto, S.; Plourde, B. L.T.; Chow, J. M.; Córcoles, A. D.; Smolin, J. A.; Merkel, S. T.; Rozen, J. R.; Keefe, G. A.; Rothwell, M. B.; Ketchen, M. B.; Steffen, M., Phys. Rev. B, 86, 100506(R) (2012)
[11] Kirchmair, G.; Vlastakis, B.; Leghtas, Z.; Nigg, S. E.; Paik, H.; Ginossar, E.; Mirrahimi, M.; Frunzio, L.; Girvin, S. M.; Schoelkopf, R. J., Nature, 495, 205 (2013)
[12] Devoret, M. H.; Schoelkopf, R. J., Science, 339, 1169 (2013)
[13] Houck, A. A.; Türeci, H. E.; Koch, J., Nat. Phys., 8, 292 (2012)
[14] Underwood, D. L.; Shanks, W. E.; Koch, J.; Houck, A. A., Phys. Rev. A, 86, 023837 (2012)
[15] Koch, J.; Houck, A. A.; Le Hur, K.; Girvin, S. M., Phys. Rev. A, 82, 043811 (2010)
[16] Jordan, S. P.; Lee, K. S.M.; Preskill, J., Science, 336, 1130 (2012)
[17] Wiese, U.-J., Ann. Phys., 525, 777 (2013)
[18] Wilson, K. G., Phys. Rev. D, 10, 2445 (1974)
[19] Kogut, J.; Susskind, L., Phys. Rev. D, 11, 395 (1975)
[20] Gattringer, C.; Lang, C. B., Quantum Chromodynamics on the Lattice (2010), Springer-Verlag: Springer-Verlag Berlin Heidelberg
[21] Kogut, J. B., Rev. Modern Phys., 51, 659 (1979)
[22] Wen, X.-G., Quantum Field Theory of Many-body Systems (2004), Oxford University Press: Oxford University Press New York
[23] Lee, P. A.; Nagaosa, N.; Wen, X.-G., Rev. Modern Phys., 78, 17 (2006)
[24] Lacroix, C.; Mendels, P.; Mila, F., Introduction to Frustrated Magnetism (2011), Springer-Verlag: Springer-Verlag Berlin
[25] Balents, L., Nature, 464, 199 (2010)
[26] Büchler, H. P.; Hermele, M.; Huber, S. D.; Fisher, M. P.A.; Zoller, P., Phys. Rev. Lett., 95, 040402 (2005)
[27] Weimer, H.; Müller, M.; Lesanovsky, I.; Zoller, P.; Büchler, H. P., Nat. Phys., 6, 382 (2010)
[28] Kapit, E.; Mueller, E., Phys. Rev. A, 83, 033625 (2011)
[29] Zohar, E.; Reznik, B., Phys. Rev. Lett., 107, 275301 (2011)
[30] Banerjee, D.; Dalmonte, M.; Müller, M.; Rico, E.; Stebler, P.; Wiese, U.-J.; Zoller, P., Phys. Rev. Lett., 109, 175302 (2012)
[31] Zohar, E.; Cirac, J. I.; Reznik, B., Phys. Rev. Lett., 109, 125302 (2012)
[32] Zohar, E.; Cirac, J. I.; Reznik, B., Phys. Rev. Lett., 110, 055302 (2013)
[33] Tagliacozzo, L.; Celi, A.; Zamora, A.; Lewenstein, M., Ann. Phys., 330, 160 (2013) · Zbl 1266.81132
[34] Banerjee, D.; Bögli, M.; Dalmonte, M.; Rico, E.; Stebler, P.; Wiese, U.-J.; Zoller, P., Phys. Rev. Lett., 110, 125303 (2013)
[35] Zohar, E.; Cirac, J. I.; Reznik, B., Phys. Rev. Lett., 110, 125304 (2013)
[36] Tagliacozzo, L.; Celi, A.; Orland, P.; Mitchell, M. W.; Lewenstein, M., Nature Comm., 4 (2013)
[37] Zohar, E.; Cirac, J. I.; Reznik, B., Phys. Rev. A, 88, 023617 (2013)
[39] Ioffe, L. B.; Feigel’man, M. V.; Ioselevich, A.; Ivanov, D.; Troyer, M.; Blatter, G., Nature, 415, 503 (2002)
[40] Hauke, P.; Marcos, D.; Dalmonte, M.; Zoller, P., Phys. Rev. X, 3, 041018 (2013)
[41] Marcos, D.; Rabl, P.; Rico, E.; Zoller, P., Phys. Rev. Lett., 111, 110504 (2013)
[42] Horn, D., Phys. Lett. B, 100, 149 (1981)
[43] Orland, P.; Rohrlich, D., Nucl. Phys. B, 338, 647 (1990)
[44] Chandrasekharan, S.; Wiese, U.-J, Nucl. Phys. B, 492, 455 (1997)
[45] Brower, R.; Chandrasekharan, S.; Wiese, U.-J., Phys. Rev. D, 60, 094502 (1999)
[46] Anderson, P. W., Science, 235, 1196 (1987)
[47] Banerjee, D.; Jiang, F.-J.; Widmer, P.; Wiese, U.-J., J. Stat. Mech., P12010 (2013)
[48] Banerjee, D.; Widmer, P.; Jiang, F. J.; Wiese, U.-J., PoS, 333 (LATTICE 2013)
[50] Trotzky, S.; Chen, Y.-A.; Flesch, A.; McCulloch, I. P.; Schollwöck, U.; Eisert, J.; Bloch, I., Nat. Phys., 8, 325 (2012)
[51] Rokhsar, D. S.; Kivelson, S. A., Phys. Rev. Lett., 61, 2376 (1998)
[52] Koch, J.; Yu, T. M.; Gambetta, J.; Houck, A. A.; Schuster, D. I.; Majer, J.; Blais, A.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Phys. Rev. A, 76, 042319 (2007)
[53] Schreier, J. A.; Houck, A. A.; Koch, J.; Schuster, D. I.; Johnson, B. R.; Chow, J. M.; Gambetta, J. M.; Majer, J.; Frunzio, L.; Devoret, M. H.; Girvin, S. M.; Schoelkopf, R. J., Phys. Rev. B, 77, 180502(R) (2008)
[54] Sharypov, A. V.; Deng, X.; Tian, L., Phys. Rev. B, 86, 014516 (2012)
[55] Jin, J.; Rossini, D.; Fazio, R.; Leib, M.; Hartmann, M. J., Phys. Rev. Lett., 110, 163605 (2013)
[57] Fukuhara, T.; Kantian, A.; Endres, M.; Cheneau, M.; Schau§, P.; Hild, S.; Bellem, D.; Schollwöck, U.; Giamarchi, T.; Gross, C.; Bloch, I.; Kuhr, S., Nat. Phys., 9, 235 (2013)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.