×

Metastable energy strata in numerical discretizations of weakly nonlinear wave equations. (English) Zbl 1360.65299

Summary: The quadratic nonlinear wave equation on a one-dimensional torus with small initial values located in a single Fourier mode is considered. In this situation, the formation of metastable energy strata has recently been described and their long-time stability has been shown. The topic of the present paper is the correct reproduction of these metastable energy strata by a numerical method. For symplectic trigonometric integrators applied to the equation, it is shown that these energy strata are reproduced even on long time intervals in a qualitatively correct way.

MSC:

65P10 Numerical methods for Hamiltonian systems including symplectic integrators
65P40 Numerical nonlinear stabilities in dynamical systems
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
35L05 Wave equation

References:

[1] W. Bao, Analysis and comparison of numerical methods for the Klein-Gordon equation in the nonrelativistic limit regime,, Numer. Math., 120, 189 (2012) · Zbl 1248.65087 · doi:10.1007/s00211-011-0411-2
[2] B. Cano, Conservation of invariants by symmetric multistep cosine methods for second-order partial differential equations,, BIT, 53, 29 (2013) · Zbl 1264.65165 · doi:10.1007/s10543-012-0393-1
[3] B. Cano, Plane waves numerical stability of some explicit exponential methods for cubic Schrödinger equation,, J. Comp. Math., 34, 385 (2016) · Zbl 1374.65150 · doi:10.4208/jcm.1601-m4541
[4] B. Cano, Conserved quantities of some Hamiltonian wave equations after full discretization,, Numer. Math., 103, 197 (2006) · Zbl 1096.65125 · doi:10.1007/s00211-006-0680-3
[5] D. Cohen, Long-term analysis of numerical integrators for oscillatory Hamiltonian systems under minimal non-resonance conditions,, BIT, 55, 705 (2015) · Zbl 1331.65171 · doi:10.1007/s10543-014-0527-8
[6] D. Cohen, Conservation of energy, momentum and actions in numerical discretizations of non-linear wave equations,, Numer. Math., 110, 113 (2008) · Zbl 1163.65066 · doi:10.1007/s00211-008-0163-9
[7] M. Dahlby, Plane wave stability of some conservative schemes for the cubic Schrödinger equation,, M2AN Math. Model. Numer. Anal., 43, 677 (2009) · Zbl 1167.65449 · doi:10.1051/m2an/2009022
[8] P. Deuflhard, A study of extrapolation methods based on multistep schemes without parasitic solutions,, Z. Angew. Math. Phys., 30, 177 (1979) · Zbl 0406.70012 · doi:10.1007/BF01601932
[9] X. Dong, Stability and convergence of trigonometric integrator pseudospectral discretization for \(N\)-coupled nonlinear Klein-Gordon equations,, Appl. Math. Comput., 232, 752 (2014) · Zbl 1410.65392 · doi:10.1016/j.amc.2014.01.144
[10] E. Faou, Plane wave stability of the split-step Fourier method for the nonlinear Schrödinger equation,, Forum Math. Sigma, 2 (2014) · Zbl 1297.65127 · doi:10.1017/fms.2014.4
[11] E. Faou, Hamiltonian interpolation of splitting approximations for nonlinear PDEs,, Found. Comput. Math., 11, 381 (2011) · Zbl 1232.65176 · doi:10.1007/s10208-011-9094-4
[12] E. Faou, Birkhoff normal form for splitting methods applied to semilinear Hamiltonian PDEs. I. Finite-dimensional discretization,, Numer. Math., 114, 429 (2010) · Zbl 1189.65300 · doi:10.1007/s00211-009-0258-y
[13] B. García-Archilla, Long-time-step methods for oscillatory differential equations,, SIAM J. Sci. Comput., 20, 930 (1999) · Zbl 0927.65143 · doi:10.1137/S1064827596313851
[14] L. Gauckler, Error analysis of trigonometric integrators for semilinear wave equations,, SIAM J. Numer. Anal., 53, 1082 (2015) · Zbl 1457.65076 · doi:10.1137/140977217
[15] L. Gauckler, Metastable energy strata in weakly nonlinear wave equations,, Comm. Partial Differential Equations, 37, 1391 (2012) · Zbl 1255.35042 · doi:10.1080/03605302.2012.683503
[16] H. Grubmüller, Generalized Verlet algorithm for efficient molecular dynamics simulations with long-range interactions,, Mol. Sim., 6, 121 (1991) · doi:10.1080/08927029108022142
[17] E. Hairer, Spectral semi-discretisations of weakly nonlinear wave equations over long times,, Found. Comput. Math., 8, 319 (2008) · Zbl 1156.35007 · doi:10.1007/s10208-007-9014-9
[18] E. Hairer, <em>Geometric Numerical Integration. Structure-preserving Algorithms for Ordinary Differential Equations</em>,, vol. 31 of Springer Series in Computational Mathematics (2006) · Zbl 1094.65125 · doi:10.1007/3-540-30666-8
[19] M. Khanamiryan, Long-term behavior of the numerical solution of the cubic non-linear schrödinger equation using strang splitting method,, preprint (2012)
[20] T. I. Lakoba, Instability of the split-step method for a signal with nonzero central frequency,, J. Opt. Soc. Am. B, 30, 3260 (2013) · doi:10.1364/JOSAB.30.003260
[21] M. Tuckerman, Reversible multiple time scale molecular dynamics,, J. Chem. Phys., 97, 1990 (1992) · doi:10.1063/1.463137
[22] J. A. C. Weideman, Split-step methods for the solution of the nonlinear Schrödinger equation,, SIAM J. Numer. Anal., 23, 485 (1986) · Zbl 0597.76012 · doi:10.1137/0723033
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.