×

Hybrid symbolic-numeric integration in multiple dimensions via tensor-product series. (English) Zbl 1360.65082

Kauers, Manuel (ed.), Proceedings of the 2005 international symposium on symbolic and algebraic computation, ISSAC’05, Beijing, China, July 24–27, 2005. New York, NY: ACM Press (ISBN 1-59593-095-7). 84-91 (2005).

MSC:

65D30 Numerical integration
68W30 Symbolic computation and algebraic computation

Software:

DCUHRE; Maple
Full Text: DOI

References:

[1] J. Bernsten, T. O. Espelid, and A. C. Genz. Algorithm 698: DCUHRE - An Adaptive Multidimensional Integration Routine for a Vector of Integrals. ACM Transactions on Mathematical Software, 17:452-456, 1991. 10.1145/210232.210234 · Zbl 0900.65053
[2] O. A. Carvajal. A New Hybrid Symbolic-Numeric Method for Multiple Integration Based on Tensor-Product Series Approximations. Master’s thesis, Univ of Waterloo, Waterloo, ON, Canada, 2004.
[3] F. W. Chapman. Generalized Orthogonal Series for Natural Tensor Product Interpolation. PhD thesis, Univ of Waterloo, Waterloo, ON, Canada, 2003.
[4] W. Cheney and W. Light. A Course in Approximation Theory. The Brooks/Cole Series in Advanced Mathematics. Brooks/Cole Publishing Co., Pacific Grove, California, 2000.
[5] K. O. Geddes. Numerical Integration in a Symbolic Context. In B. W. Char, editor, Proc of SYMSAC’86, pages 185-191, New York, 1986. ACM Press. 10.1145/32439.32476
[6] K. O. Geddes and G. J. Fee. Hybrid Symbolic-Numeric Integration in Maple. In P. Wang, editor, Proc of ISAAC’92, pages 36-41, New York, 1992. ACM Press. 10.1145/143242.143262 · Zbl 0977.65500
[7] A. C. Genz and A. A. Malik. An Adaptive Algorithm for Numerical Integration over an N-Dimensional Rectangular Region. Journal of Computational and Applied Mathematics, 6:295-302, 1980. · Zbl 0443.65009
[8] J. M. Hammersley and D. C. Handscomb. Monte Carlo Methods. Methuen, 1964. · Zbl 0121.35503
[9] T. X. He. Dimensionality Reducing Expansion of Multivariate Integration. Birkhaüser, 2001. · Zbl 1085.65025
[10] F. J. Hickernell. What Affects Accuracy of Quasi-Monte Carlo Quadrature? In H. Niederreiter and J. Spanier, editors, Monte Carlo and Quasi-Monte Carlo Methods, pages 16-55. Springer-Verlag, Berlin, 2000. · Zbl 0941.65025
[11] C. Lemieux and P. L’Ecuyer. On Selection Criteria for Lattice Rules and Other Quasi-Monte Carlo Point Sets. Mathematics and Computers in Simulation, 55(1-3):139-148, 2001. 10.1016/S0378-4754(00)00254-8 · Zbl 0981.65007
[12] I. H. Sloan and S. Joe. Lattice Methods for Multiple Integration. Oxford University Press, 1994. · Zbl 0855.65013
[13] A. H. Stroud. Approximate Calculation of Multiple Integrals. Prentice-Hall, 1971. · Zbl 0379.65013
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.