×

Stochastic variational inequalities and regularity for degenerate stochastic partial differential equations. (English) Zbl 1360.60123

Stochastic partial differential equations of the form \[ dX_t=\operatorname{div}(\phi(X_t))\,dt+B(X_t)\,dW_t,\quad X_0=x_0,\tag{1} \] with the homogeneous Dirichlet boundary condition on a bounded convex domain with smooth boundary \(\mathcal O\subseteq\mathbb R^d\) for \(d\leq 6\) are studied. Under fairly general assumptions on \(\phi\) and \(B\) – covering the mean curvature flow in one dimension, the minimal surface/image denoising and the additive or the linear multiplicative diffusion terms – the equation (1) can be rewritten in a relaxed form \[ dX_t\in-\partial\varphi(X_t)\,dt+B(X_t)\,dW_t,\quad X_0=x_0,\tag{2} \] for a suitably defined \(\varphi\), and it is shown that it has a unique generalized solution if \(x_0\in L^2(\Omega;L^2(\mathcal O))\). If, in addition, \(\mathbb E\,\varphi(x_0)<\infty\) then the unique generalized solution is also a strong solution (in the PDE sense defined in the paper). In both cases, the authors prove an energy estimate that implies a better regularity of the unique solutions.
The above result, however, does not cover the mean curvature flow with a homogeneous normal noise, i.e., \[ dX_t=\frac{\partial^2_xX_t}{1+(\partial _xX_t)^2}\,dt+\alpha\sqrt{1+(\partial_xX_t)^2}\circ\,d\beta_t,\quad X_0=x_0,\tag{3} \] on \(\mathcal O=(0,1)\) with the periodic boundary condition, where \(\beta\) is a real-valued Brownian motion. The equation (3) is rewritten as \[ dX_t\in\frac{\alpha^2}{2}\partial^2_xX_t\,dt-\partial\varphi(X_t)\,dt+B(X_t)\,d\beta_t,\quad X_0=x_0,\tag{4} \] for a suitably defined \(\varphi\). In this case, the existence and uniqueness of solutions is also proved for every \(x_0\in L^2(\Omega;L^2(\mathcal O))\) but the solutions must be understood in a weaker PDE sense as a stochastic variational inequality (which is a weaker notion than the generalized strong solution). The authors also prove an energy estimate that implies a better regularity of the unique solution, and an \(L^2\)-contraction principle \[ \mathbb E\,\|X^{x_0}_t-X^{x_1}_t\|^2_{L^2(\mathcal O)}\leq\mathbb E\,\|x_0-x_1\|^2_{L^2(\mathcal O)}. \]

MSC:

60H15 Stochastic partial differential equations (aspects of stochastic analysis)
35R60 PDEs with randomness, stochastic partial differential equations
49J40 Variational inequalities
35K93 Quasilinear parabolic equations with mean curvature operator

References:

[1] Attouch, Hedy; Buttazzo, Giuseppe; Michaille, G{\'e}rard, Variational analysis in Sobolev and BV spaces, MPS/SIAM Series on Optimization 6, xii+634 pp. (2006), Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA; Mathematical Programming Society (MPS), Philadelphia, PA · Zbl 1095.49001
[2] Andreu, Fuensanta; Caselles, Vincent; Maz{\'o}n, Jos{\'e} Mar{\'{\i }}a, A parabolic quasilinear problem for linear growth functionals, Rev. Mat. Iberoamericana, 18, 1, 135-185 (2002) · Zbl 1010.35063 · doi:10.4171/RMI/314
[3] Anzellotti, Gabriele, Pairings between measures and bounded functions and compensated compactness, Ann. Mat. Pura Appl. (4), 135, 293-318 (1984) (1983) · Zbl 0572.46023 · doi:10.1007/BF01781073
[4] Anzellotti, Gabriele, The Euler equation for functionals with linear growth, Trans. Amer. Math. Soc., 290, 2, 483-501 (1985) · Zbl 0611.49018 · doi:10.2307/2000295
[5] Barbu, Viorel; Da Prato, Giuseppe; R{\"o}ckner, Michael, Existence of strong solutions for stochastic porous media equation under general monotonicity conditions, Ann. Probab., 37, 2, 428-452 (2009) · Zbl 1162.76054 · doi:10.1214/08-AOP408
[6] Barbu, Viorel; R{\"o}ckner, Michael, Stochastic variational inequalities and applications to the total variation flow perturbed by linear multiplicative noise, Arch. Ration. Mech. Anal., 209, 3, 797-834 (2013) · Zbl 1286.35202 · doi:10.1007/s00205-013-0632-x
[7] Dirr, Nicolas; Luckhaus, Stephan; Novaga, Matteo, A stochastic selection principle in case of fattening for curvature flow, Calc. Var. Partial Differential Equations, 13, 4, 405-425 (2001) · Zbl 1015.60070 · doi:10.1007/s005260100080
[8] Es-Sarhir, Abdelhadi; von Renesse, Max-K., Ergodicity of stochastic curve shortening flow in the plane, SIAM J. Math. Anal., 44, 1, 224-244 (2012) · Zbl 1251.47041 · doi:10.1137/100798235
[9] Es-Sarhir, Abdelhadi; von Renesse, Max-K.; Stannat, Wilhelm, Estimates for the ergodic measure and polynomial stability of plane stochastic curve shortening flow, NoDEA Nonlinear Differential Equations Appl., 19, 6, 663-675 (2012) · Zbl 1266.60117 · doi:10.1007/s00030-011-0146-x
[10] Feng, Xiaobing; Li, Yukun; Prohl, Andreas, Finite element approximations of the stochastic mean curvature flow of planar curves of graphs, Stoch. Partial Differ. Equ. Anal. Comput., 2, 1, 54-83 (2014) · Zbl 1300.65006 · doi:10.1007/s40072-014-0025-7
[11] Gess, Benjamin, Strong solutions for stochastic partial differential equations of gradient type, J. Funct. Anal., 263, 8, 2355-2383 (2012) · Zbl 1267.60072 · doi:10.1016/j.jfa.2012.07.001
[12] Donald Geman and George Reynolds, Constrained restoration and the recovery of discontinuities, IEEE Transactions on Pattern Analysis and Machine Intelligence 14 (1992), no. 3, 367-383.
[13] Gess, Benjamin; T{\"o}lle, Jonas M., Multi-valued, singular stochastic evolution inclusions, J. Math. Pures Appl. (9), 101, 6, 789-827 (2014) · Zbl 1295.47042 · doi:10.1016/j.matpur.2013.10.004
[14] Kindermann, Stefan; Osher, Stanley; Jones, Peter W., Deblurring and denoising of images by nonlocal functionals, Multiscale Model. Simul., 4, 4, 1091-1115 (electronic) (2005) · Zbl 1161.68827 · doi:10.1137/050622249
[15] Lions, Pierre-Louis; Souganidis, Panagiotis E., Fully nonlinear stochastic partial differential equations, C. R. Acad. Sci. Paris S\'er. I Math., 326, 9, 1085-1092 (1998) · Zbl 1002.60552 · doi:10.1016/S0764-4442(98)80067-0
[16] Lions, Pierre-Louis; Souganidis, Panagiotis E., Fully nonlinear stochastic partial differential equations: non-smooth equations and applications, C. R. Acad. Sci. Paris S\'er. I Math., 327, 8, 735-741 (1998) · Zbl 0924.35203 · doi:10.1016/S0764-4442(98)80161-4
[17] Lions, Pierre-Louis; Souganidis, Panagiotis E., Fully nonlinear stochastic pde with semilinear stochastic dependence, C. R. Acad. Sci. Paris S\'er. I Math., 331, 8, 617-624 (2000) · Zbl 0966.60058 · doi:10.1016/S0764-4442(00)00583-8
[18] Ma, Zhi Ming; R{\"o}ckner, Michael, Introduction to the theory of (nonsymmetric) Dirichlet forms, Universitext, vi+209 pp. (1992), Springer-Verlag, Berlin · Zbl 0826.31001 · doi:10.1007/978-3-642-77739-4
[19] Pr{\'e}v{\^o}t, Claudia; R{\"o}ckner, Michael, A concise course on stochastic partial differential equations, Lecture Notes in Mathematics 1905, vi+144 pp. (2007), Springer, Berlin · Zbl 1123.60001
[20] Rudin, Leonid I.; Osher, Stanley; Fatemi, Emad, Nonlinear total variation based noise removal algorithms, Phys. D, 60, 1-4, 259-268 (1992) · Zbl 0780.49028
[21] Ren, Jiagang; R{\"o}ckner, Michael; Wang, Feng-Yu, Stochastic generalized porous media and fast diffusion equations, J. Differential Equations, 238, 1, 118-152 (2007) · Zbl 1129.60059 · doi:10.1016/j.jde.2007.03.027
[22] Souganidis, P. E.; Yip, N. K., Uniqueness of motion by mean curvature perturbed by stochastic noise, Ann. Inst. H. Poincar\'e Anal. Non Lin\'eaire, 21, 1, 1-23 (2004) · Zbl 1057.35106 · doi:10.1016/S0294-1449(03)00029-5
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.