×

Inequalities and asymptotics for the Euler-Mascheroni constant based on DeTemple’s result. (English) Zbl 1360.41015

The author considers the approximation of the Euler-Mascheroni constant \(\gamma\) as the limit of the difference between the harmonic series and the logarithm. In particular, DeTemple’s inequalities: \[ {1\over24(n+1)^2}<\left[\sum_{k=1}^n{1\over k}-\ln\left(n+{1\over 2}\right)\right]-\gamma<{1\over24n^2},\quad n=1,2,3,\dots \] The author goes one step forward and shows that \[ \left[\sum_{k=1}^n{1\over k}-\ln\left(n+{1\over 2}\right)\right]-\gamma\sim\sum_{k=0}^\infty{a_k\over(n^2+n+b_k)^{2k-1}}, \] where the constants \(a_k\) and \(b_k\) are determined by means of certain nonlinear recurrence relations. Previously, the author has obtained a similar expansion for the digamma function. As a consequence, the following improvement of DeTemple’s inequalities are given: \[ {1\over24(n^2+n+\alpha)}<\left[\sum_{k=1}^n{1\over k}-\ln\left(n+{1\over 2}\right)\right]-\gamma<{1\over24(n^2+n+\beta)}, \quad n=1,2,3,\dots \] for certain constants \(\alpha\) and \(\beta\). Another more elaborated couple of inequalities are also given.

MSC:

41A60 Asymptotic approximations, asymptotic expansions (steepest descent, etc.)
11Y60 Evaluation of number-theoretic constants
33B15 Gamma, beta and polygamma functions

Software:

DLMF
Full Text: DOI

References:

[1] Abramowitz, M., Stegun, I.A. (eds.): Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables. National Bureau of Standards, Applied Mathematics Series, vol. 55. 9th printing, Dover, New York (1972) · Zbl 0543.33001
[2] Allasia, G., Giordano, C., Pećarić, J.: Inequalities for the gamma function relating to asymptotic expansions. Math. Inequal. Appl. 5, 543-555 (2002) · Zbl 1036.26013
[3] Alzer, H.: Inequalities for the gamma and polygamma functions. Abh. Math. Sem. Univ. Hamburg 68, 363-372 (1998) · Zbl 0945.33003 · doi:10.1007/BF02942573
[4] Anderson, G.D., Barnard, R.W., Richards, K.C., Vamanamurthy, M.K., Vuorinen, M.: Inequalities for zero-balanced hypergeometric functions. Trans. Amer. Math. Soc. 347, 1713-1723 (1995) · Zbl 0826.33003 · doi:10.1090/S0002-9947-1995-1264800-3
[5] Chen, C.P.: Inequalities for the Euler-Mascheroni constant. Appl. Math. Lett. 23, 161-164 (2010) · Zbl 1203.26025 · doi:10.1016/j.aml.2009.09.005
[6] Cuyt, A., Petersen, V.B., Verdonk, B., Waadeland, H., Jones, W.B.: Handbook of Continued Fractions for Special Functions. Springer, New York (2008) · Zbl 1150.30003
[7] Dence, T.P., Dence, J.B.: A survey of Euler’s constant. Math. Mag. 82, 255-265 (2009) · Zbl 1227.11128 · doi:10.4169/193009809X468689
[8] DeTemple, D.W.: The non-integer property of sums of reciprocals of consecutive integers. Math. Gaz. 75, 193-194 (1991) · doi:10.2307/3620253
[9] DeTemple, D.W.: A quicker convergence to Euler’s constant. Amer. Math. Monthly 100, 468-470 (1993) · Zbl 0858.11068 · doi:10.2307/2324300
[10] Olver, F.W.J., Lozier, D.W., Boisvert, R.F., Clarks, C.W. (eds.): NIST Handbook of Mathematical Functions. Cambridge University Press, New York (2010) · Zbl 1198.00002
[11] Havil, J.: Gamma: exploring Euler’s constant. Princeton Univ. Press, Princeton (2003) · Zbl 1023.11001
[12] Karatsuba, E.A.: On the computation of the Euler constant γ. Numer. Algorithms 24, 83-97 (2000) · Zbl 0958.33001 · doi:10.1023/A:1019137125281
[13] Luke, Y.L.: The Special Functions and Their Approximations, vol. I. Academic Press, New York (1969) · Zbl 0193.01701
[14] Mortici, C.: On new sequences converging towards the Euler-Mascheroni constant. Comput. Math. Appl. 59, 2610-2614 (2010) · Zbl 1193.33003 · doi:10.1016/j.camwa.2010.01.029
[15] Rippon, P.J.: Convergence with pictures. Amer. Math. Monthly 93, 476-478 (1986) · doi:10.2307/2323478
[16] Sîntămărian, A.: A generalization of Euler’s constant. Numer. Algorithms 46, 141-151 (2007) · Zbl 1130.11075 · doi:10.1007/s11075-007-9132-0
[17] Tims, S.R., Tyrrell, J.A.: Approximate evaluation of Euler’s constant. Math. Gaz 55, 65-67 (1971) · Zbl 0208.32002 · doi:10.2307/3613323
[18] Tóth, L.: Problem E3432. Amer. Math. Monthly 98, 264 (1991) · doi:10.2307/2325035
[19] Tóth, L.: Problem E3432 (Solution). Amer. Math. Monthly 99, 684-685 (1992) · doi:10.2307/2325016
[20] Young, R.M.: Euler’s Constant. Math. Gaz. 75, 187-190 (1991) · Zbl 1124.11305 · doi:10.2307/3620251
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.