×

Periodicity of \(\beta\)-expansions for certain Pisot units. (English. French summary) Zbl 1360.37103

Summary: Given \(\beta >1\), let \(T_\beta\) \[ \begin{aligned} T_\beta : [0,1[&\to [0,1[ \\ x &\to \beta x-\lfloor\beta_x\rfloor.\end{aligned} \] The iteration of this transformation gives rise to the greedy \(\beta\)-expansion. There has been extensive research on the properties of this expansion and its dependence on the parameter \(\beta\).
In [Bull. Lond. Math. Soc. 12, 269–278 (1980; Zbl 0494.10040)], K. Schmidt analyzed the set of periodic points of \(T_\beta\), where \(\beta\) is a Pisot number. In an attempt to generalize some of his results, we study, for certain Pisot units, a different expansion that we call linear expansion \[ x=\sum\limits_{i\geq 0} e_i\beta^{-i}, \] where each \(e_i\) can be superior to \(\lfloor\beta\rfloor\), its properties and the relation with \(\mathrm{Per}(\beta)\).

MSC:

37E05 Dynamical systems involving maps of the interval
37C15 Topological and differentiable equivalence, conjugacy, moduli, classification of dynamical systems
11C20 Matrices, determinants in number theory
11R06 PV-numbers and generalizations; other special algebraic numbers; Mahler measure
11A63 Radix representation; digital problems

Citations:

Zbl 0494.10040
Full Text: DOI

References:

[1] Adamczewski, B., Frougny, C., Siegel, A., Steiner, W. ,Rational numbers with purely periodic {\(\beta\)}-expansion, Bull. London Math. Soc. 42 (2010), 538-552. · Zbl 1211.11010
[2] Akiyama, S., Pisot Numbers and greedy algorithm, In Number Theory (Eger,1996), pages 9-21. de Gruyter, Berlin, 1998. · Zbl 0919.11063
[3] Akiyama, S., Self affine tilling and Pisot numeration system, In Number Theory and its applications (Kyoto, 1997), volume 2 of Dev.Math., pages 7-17. Kluwer Acad.Publ., Dordrecht, 1999.
[4] Akiyama, S., Cubic Pisot units with finite beta expansions, in Algebraic number theory and Diophantine analysis, (Graz, 1988), pages 11-26. de Gruyter, Berlin, 2000 · Zbl 1001.11038
[5] Akiyama,S., Barat, G., Berth\'{}e, V. and Siegel, A., Boundary of central tiles associated with Pisot beta-numeration and purely periodic expansions, Monatsh. Math. 155, (2008) 377-419 · Zbl 1190.11005
[6] Bertrand, A., D\'{}eveloppement en base de Pisot et r\'{}epartition m\'{}odulo 1, C. R. Acad. Sci. Paris S\'{}er. A-B Math 285(6) (1977), A419-A421. · Zbl 0362.10040
[7] Bertrand-Mathis, A., D\'{}eveloppement en base {\(\theta\)}, r\'{}epartition modulo um de la suite (x{\(\theta\)}n)n\geq0, langages codes e {\(\theta\)}-shift, Bull.Soc. Math France 114 (1986) 271-323 · Zbl 0628.58024
[8] Boyd, D. W.,Salem numbers of degree four have periodic expansions, Th\'{}eorie des nombres (Quebec, PQ, 1987), 57-64 de Gruyter, Berlin, 1987.
[9] Boyd, D. W., A characterization of two related classes of Salem numbers, Journal Number Theory 50 (1995), no2, 309-317 · Zbl 0824.11069
[10] Boyd, D. W., On the beta expansion for Salem numbers of degree 6, Mathematics of Computation, vol. 65(1996), no214, 861–875 . · Zbl 0848.11048
[11] Boyd, D. W., The beta expansion for Salem numbers, Organic mathematics (Burnaby, BC, 1995), 117–131, CMS Conf. Proc., 20, Amer. Math. Soc., Providence, RI, 1997. · Zbl 1053.11536
[12] Frougny, C., Solomyak, B., Finite {\(\beta\)}-expansions, Ergodic Theory and Dynamical Systems, 12 (1992), 45-82.
[13] Lind, D., Marcus, B., Symbolic Dynamics and Coding, Cambridge University Press, (1995). · Zbl 1106.37301
[14] Parry, W., On the {\(\beta\)}-expansions of real numbers, Acta Math. Hungar. 11 (1960), 401-416. · Zbl 0099.28103
[15] Praggastis, B., Numeration systems and Markov partitions from self-similar tillings, Trans. amer. Math. Soc., 351(8), (1999), 3315–3349. · Zbl 0984.11008
[16] Renyi, A., Representations for real numbers and their ergodic, Acta Math. Sci. Hung., 8 (1957).
[17] Schmidt, K., On periodic expansions of Pisot numbers and Salem numbers, Bull. London Math. Soc. 12 (1980), no. 4, 269-278. · Zbl 0494.10040
[18] Thurston, W., Groups, tilings and finite state automata, AMS Colloquium lectures, 1989.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.