×

Positive solutions of periodic boundary value problems for the second-order differential equation with a parameter. (English) Zbl 1360.34053

Summary: In this paper, we investigate the existence of positive solutions for a class of singular second-order differential equations with periodic boundary conditions. By using the fixed point theory in cones, the explicit range for \(\lambda\) is derived such that for any \(\lambda\) lying in this interval, the existence of at least one positive solution to the boundary value problem is guaranteed.

MSC:

34B16 Singular nonlinear boundary value problems for ordinary differential equations
34B18 Positive solutions to nonlinear boundary value problems for ordinary differential equations

Software:

Green

References:

[1] Propst, G: Pumping effects in models of periodically forced flow configurations. Physica D 217, 193-201 (2006) · Zbl 1136.76338
[2] Cid, JA, Propst, G, Tvrdy, M: On the pumping effect in a pipe/tank flow configuration with friction. Physica D 273(8), 28-33 (2014) · Zbl 1383.76174
[3] Jiang, D: On the existence of positive solutions to second order periodic BVPs. Acta Math. Sci. 18, 31-35 (1998)
[4] Zhang, Z, Wang, J: On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations. J. Math. Anal. Appl. 281, 99-107 (2003) · Zbl 1030.34024 · doi:10.1016/S0022-247X(02)00538-3
[5] Torres, PJ: Existence of one-signed periodic solutions of some second-order differential equations via a Krasnosel’skii fixed point theorem. J. Differ. Equ. 190, 643-662 (2003) · Zbl 1032.34040 · doi:10.1016/S0022-0396(02)00152-3
[6] Zhang, Z, Wang, J: On existence and multiplicity of positive solutions to periodic boundary value problems for singular nonlinear second order differential equations. J. Math. Anal. Appl. 281, 99-107 (2003) · Zbl 1030.34024 · doi:10.1016/S0022-247X(02)00538-3
[7] Yao, Q: Positive solutions of nonlinear second-order periodic boundary value problems. Appl. Math. Lett. 20, 583-590 (2007) · Zbl 1131.34303 · doi:10.1016/j.aml.2006.08.003
[8] Fu, X, Wang, W: Periodic boundary value problems for second-order functional differential equations. J. Inequal. Appl. 2010, 11 (2010) · Zbl 1196.34086
[9] Wang, W, Shen, J, Nieto, JJ: Periodic boundary value problems for second order functional differential equations. J. Appl. Math. Comput. 36, 173-186 (2011) · Zbl 1362.34104 · doi:10.1007/s12190-010-0395-6
[10] Liu, L, Hao, X, Wu, Y: Positive solutions for singular second order differential equations with integral boundary conditions. Math. Comput. Model. 57, 836-847 (2013) · Zbl 1305.34040 · doi:10.1016/j.mcm.2012.09.012
[11] Liu, L, Sun, F, Zhang, X, Wu, Y: Bifurcation analysis for a singular differential system with two parameters via to degree theory. Nonlinear Anal., Model. Control 22(1), 31-50 (2017) · Zbl 1420.34048
[12] Zhang, X, Liu, L, Wu, Y: Fixed point theorems for the sum of three classes of mixed monotone operators and applications. Fixed Point Theory Appl. 2016, 49 (2016) · Zbl 1510.47063 · doi:10.1186/s13663-016-0533-4
[13] Liu, L, Zhang, X, Jiang, J, Wu, Y: The unique solution of a class of sum mixed monotone operator equations and its application to fractional boundary value problems. J. Nonlinear Sci. Appl. 9, 2943-2958 (2016) · Zbl 1492.47060
[14] Wu, J, Zhang, X, Liu, L, Wu, Y: Twin iterative solutions for a fractional differential turbulent flow model. Bound. Value Probl. 2016, 98 (2016) · Zbl 1383.34014 · doi:10.1186/s13661-016-0604-9
[15] Liu, L, Zhang, X, Liu, L, Wu, Y: Iterative positive solutions for singular nonlinear fractional differential equation with integral boundary conditions. Adv. Differ. Equ. 2016, 154 (2016) · Zbl 1419.34098 · doi:10.1186/s13662-016-0876-5
[16] Guo, L, Liu, L, Wu, Y: Existence of positive solutions for singular higher-order fractional differential equations with infinite-points boundary conditions. Bound. Value Probl. 2016, 114 (2016) · Zbl 1343.34013 · doi:10.1186/s13661-016-0621-8
[17] Guo, L, Liu, L, Wu, Y: Existence of positive solutions for singular fractional differential equations with infinite-point boundary conditions. Nonlinear Anal., Model. Control 21(5), 635-650 (2016) · Zbl 1420.34015 · doi:10.15388/NA.2016.5.5
[18] Guo, L, Liu, L, Wu, Y: Uniqueness of iterative positive solutions for the singular fractional differential equations with integral boundary conditions. Bound. Value Probl. 2016, 147 (2016) · Zbl 1348.34013 · doi:10.1186/s13661-016-0652-1
[19] Jiang, J, Liu, L: Existence of solutions for a sequential fractional differential system with coupled boundary conditions. Bound. Value Probl. 2016, 147 (2016) · Zbl 1348.34013 · doi:10.1186/s13661-016-0652-1
[20] Bravyi, E: On solvability of periodic boundary value problems for second order linear functional differential equations. Electron. J. Qual. Theory Differ. Equ. (2016). doi:10.14232/ejqtde.2016.1.5 · Zbl 1363.34211 · doi:10.14232/ejqtde.2016.1.5
[21] Cabada, A: Green’s Functions in the Theory of Ordinary Differential Equations. Springer, Berlin (2014) · Zbl 1303.34001 · doi:10.1007/978-1-4614-9506-2
[22] Cabada, A, Cid, JA, Máquez-Villamarín, B: Computation of Green’s functions for boundary value problems with mathematica. Appl. Math. Comput. 219, 1919-1936 (2012) · Zbl 1298.34054
[23] Cid, JA, Infanteb, G, Tvrdýc, M, Zima, M: A topological approach to periodic oscillations related to the Liebau phenomenon. J. Math. Anal. Appl. 423, 1546-1556 (2015) · Zbl 1309.34031 · doi:10.1016/j.jmaa.2014.10.054
[24] Amann, H: Fixed point equations and nonlinear eigenvalue problems in order Banach spaces. SIAM Rev. 18, 620-709 (1976) · Zbl 0345.47044 · doi:10.1137/1018114
[25] Guo, DJ, Lakshmikantham, V: Nonlinear Problems in Abstract Cones. Academic Press, New York (1988) · Zbl 0661.47045
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.