×

Fourier-Mukai transforms and Bridgeland stability conditions on abelian threefolds. II. (English) Zbl 1360.14064

Bridgeland stability has attracted a lot of attention since Bridgeland presented his mathematical formulation of Douglas’s \(\Pi\)-stability in string theory and the theory of D-branes [T. Bridgeland, Ann. Math. (2) 166, No. 2, 317–345 (2007; Zbl 1137.18008)]. While the construction of Bridgeland stability conditions on surfaces was achieved early on, [T. Bridgeland, Duke Math. J. 141, No. 2, 241–291 (2008; Zbl 1138.14022)] and [D. Arcara and A. Bertram, J. Eur. Math. Soc. (JEMS) 15, No. 1, 1–38 (2013; Zbl 1259.14014)], the construction of Bridgeland stability conditions on threefolds has remained a largely open problem with important ramifications for mathematical physics, the original motivation for the subject in the first place. A conjectural construction was proposed in [A. Bayer et al., J. Algebr. Geom. 23, No. 1, 117–163 (2014; Zbl 1306.14005)], where the authors reduced the construction down to proving a weak Gieseker-Bogomolov inequality for so-called tilt-stable objects in an abelian category \(\mathcal B^{\omega,\beta}\) obtained from coherent sheaves \(\mathrm{Coh}(X)\) by tilting at a given slope with respect to classical slope stability. Those authors also proposed a stronger Gieseker-Bogomolov inequality. Until recently, however, stability conditions had only been constructed on three dimensional projective space [E. Macrì, Algebra Number Theory 8, No. 1, 173–190 (2014; Zbl 1308.14016)] and on smooth quadric threefolds [B. Schmidt, Bull. Lond. Math. Soc. 46, No. 5, 915–923 (2014; Zbl 1307.14024)], where in both cases the construction follows from proving the strong Gieseker-Bogomolov inequality for tilt-stable objects.
The paper under review, along with its prequel [A. Maciocia and D. Piyaratne, Algebr. Geom. 2, No. 3, 270–297 (2015; Zbl 1322.14040)], adds to this list by constructing Bridgeland stability conditions on a principally polarized abelian threefold \(X\) of Picard rank one. In the prequel the authors establish the weak Gieseker-Bogomolov inequality, while in the current paper they go on to establish the strong version of Bayer, Macrì, and Toda’s Gieseker-Bogomolov inequality for tilt-stable objects. Both papers use Fourier-Mukai transforms (FMT’s), i.e. autoequivalences of the derived category of sheaves \(\mathrm{D}^b(X)\), to establish equivalences between certain abelian subcategories of \(\mathrm{D}^b(X)\) which are obtained by further tilting \(\mathcal B^{\omega,\beta}\) with respect to tilt-stability. While the authors previously considered only the classical FMT using the Poincaré bundle as its kernel, by making use of more general non-trivial FMT’s, the authors are able to reduce the numerics of the strong form of the Gieseker-Bogomolov inequality to a similar but easily shown inequality for the corresponding objects in a different abelian category.

MSC:

14F05 Sheaves, derived categories of sheaves, etc. (MSC2010)
14K99 Abelian varieties and schemes
14J60 Vector bundles on surfaces and higher-dimensional varieties, and their moduli

References:

[1] 1. D. Arcara and A. Bertram, Bridgeland-stable moduli spaces for K-trivial surfaces, with an appendix by M. Lieblich, J. Eur. Math. Soc.15(1) (2013) 1-38. genRefLink(16, ’S0129167X16500075BIB001’, ’10.4171
[2] 2. P. Aspinwall et al., Dirichlet Branes and Mirror Symmetry, Clay Mathematics Monographs, 4. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge, MA (2009). · Zbl 1188.14026
[3] 3. A. Bayer, A. Bertram, E. Macrì and Y. Toda, Bridgeland stability conditions on threefolds II: An application to Fujita’s conjecture, J. Algebraic Geom.23(4) (2014) 693-710. genRefLink(16, ’S0129167X16500075BIB003’, ’10.1090
[4] 4. C. Bartocci, U. Bruzzo and D. H. Ruipérez, Fourier-Mukai and Nahm Transforms in Geometry and Mathematical Physics, Progress in Mathematics, Vol. 276 (Birkhäuser Boston, Boston, MA, 2009). genRefLink(16, ’S0129167X16500075BIB004’, ’10.1007 · Zbl 1186.14001
[5] 5. M. Bernardara and G. Hein, The Euclid-Fourier-Mukai algorithm for elliptic surfaces, Asian J. Math.18(2) (2014) 345-364. genRefLink(16, ’S0129167X16500075BIB005’, ’10.4310
[6] 6. A. Bayer, E. Macrì and Y. Toda, Bridgeland stability conditions on threefolds I: Bogomolov-Gieseker type inequalities, J. Algebraic Geom.23(1) (2014) 117-163. genRefLink(16, ’S0129167X16500075BIB006’, ’10.1090
[7] 7. T. Bridgeland, Stability conditions on triangulated categories, Ann. of Math. (2)166(2) (2007) 317-345. genRefLink(16, ’S0129167X16500075BIB007’, ’10.4007 · Zbl 1137.18008
[8] 8. T. Bridgeland, Stability conditions on K3 surfaces, Duke Math. J.141(2) (2008) 241-291. genRefLink(16, ’S0129167X16500075BIB008’, ’10.1215
[9] 9. A. Căldăraru and S. Willerton, The Mukai pairing, I: A categorical approach, New York J. Math.16 (2010) 61-98. genRefLink(128, ’S0129167X16500075BIB009’, ’000208474200006’); · Zbl 1214.14013
[10] 10. G. Hardy and E. Wright, An Introduction to the Theory of Numbers, 6th edn., Revised by R. Heath-Brown and J. Silverman, With a foreword by A. Wiles (Oxford University Press, Oxford, 2008). · Zbl 1159.11001
[11] 11. D. Huybrechts, Fourier-Mukai Transforms in Algebraic Geometry (Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, Oxford, 2006). genRefLink(16, ’S0129167X16500075BIB011’, ’10.1093
[12] 12. D. Huybrechts, Derived and abelian equivalence of K3 surfaces, J. Algebraic Geom.17(2) (2008) 375-400. genRefLink(16, ’S0129167X16500075BIB012’, ’10.1090
[13] 13. D. Huybrechts, Introduction to Stability Conditions, Moduli spaces, 179-229, London Math. Soc. Lecture Note Ser., 411 (Cambridge Univ. Press, Cambridge, 2014). genRefLink(16, ’S0129167X16500075BIB013’, ’10.1017 · Zbl 1316.14003
[14] 14. A. Knapp, Representation Theory of Semisimple Groups: An Overview Based on Examples. Reprint of the 1986 original. Princeton Landmarks in Mathematics (Princeton University Press, Princeton, NJ, 2001).
[15] 15. J. Lo and Y. More, Some examples of tilt-stable objects on threefolds, arXiv:1209.2749v1, 2012. · Zbl 1346.14032
[16] 16. A. Maciocia and D. Piyaratne, Fourier-Mukai transforms and Bridgeland stability conditions on abelian threefolds, Algebr. Geom.2(3) (2015) 270-297. genRefLink(16, ’S0129167X16500075BIB016’, ’10.14231 · Zbl 1322.14040
[17] 17. H. Minamide, S. Yanagida and K. Yoshioka, Some moduli spaces of Bridgeland’s stability conditions, Int. Math. Res. Not. (19) (2014) 5264-5327. · Zbl 1327.14087
[18] 18. E. Macrì, Stability conditions on curves, Math. Res. Lett.14 (2007) 657-672. genRefLink(16, ’S0129167X16500075BIB018’, ’10.4310
[19] 19. E. Macrì, A generalized Bogomolov-Gieseker inequality for the three-dimensional projective space, Algebra Number Theory8(1) (2014) 173-190. genRefLink(16, ’S0129167X16500075BIB019’, ’10.2140
[20] 20. S. Mukai, Semi-homogeneous vector bundles on an abelian variety, J. Math. Kyoto Univ.18(2) (1978) 239-272. · Zbl 0417.14029
[21] 21. S. Mukai, Duality between D(X) and D(X \^) with its application to Picard sheaves, Nagoya Math. J.81 (1981) 153-175. genRefLink(128, ’S0129167X16500075BIB021’, ’A1981LH95600011’);
[22] 22. S. Okada, Stability manifold of \(\mathbb{P}\)1, J. Algebraic Geom.15(3) (2006) 487-505. genRefLink(16, ’S0129167X16500075BIB022’, ’10.1090
[23] 23. D. Orlov, Equivalences of derived categories and K3 surfaces, Algebraic geometry, J. Math. Sci. (New York)84(5) (1997) 1361-1381. genRefLink(16, ’S0129167X16500075BIB023’, ’10.1007 · Zbl 0938.14019
[24] 24. D. Orlov, Derived categories of coherent sheaves on abelian varieties and equivalences between them, (Russian) Izv. Ross. Akad. Nauk Ser. Mat. 66(3) (2002) 131-158; translation in Izv. Math. 66(3) (2002) 569-594. · Zbl 1031.18007
[25] 25. G. Pareschi and M. Popa, GV-sheaves, Fourier-Mukai transform, and generic vanishing, Amer. J. Math.133(1) (2011) 235-271. genRefLink(16, ’S0129167X16500075BIB025’, ’10.1353
[26] 26. A. Polishchuk, Phases of Lagrangian-invariant objects in the derived category of an abelian variety, Kyoto J. Math.54(2) (2014) 427-482. genRefLink(16, ’S0129167X16500075BIB026’, ’10.1215
[27] 27. B. Schmidt, A generalized Bogomolov-Gieseker inequality for the smooth quadric threefold, Bull. Lond. Math. Soc.46(5) (2014) 915-923. genRefLink(16, ’S0129167X16500075BIB027’, ’10.1112
[28] 28. Y. Toda, Introduction and open problems of Donaldson-Thomas theory, Derived Categories in Algebraic Geometry, 289-318, EMS Ser. Congr. Rep., Eur. Math. Soc., Zürich (2012). · Zbl 1375.14004
[29] 29. Y. Toda, A note on Bogomolov-Gieseker type inequality for Calabi-Yau 3-folds, Proc. Amer. Math. Soc.142(10) (2014) 3387-3394. genRefLink(16, ’S0129167X16500075BIB029’, ’10.1090
[30] 30. Y. Toda, Gepner type stability conditions on graded matrix factorizations, Algebr. Geom.1(5) (2014) 613-665. genRefLink(16, ’S0129167X16500075BIB030’, ’10.14231
[31] 31. S. Yanagida and K. Yoshioka, Semi-homogeneous sheaves, Fourier-Mukai transforms and moduli of stable sheaves on abelian surfaces, J. Reine Angew. Math.684 (2013) 31-86. genRefLink(128, ’S0129167X16500075BIB031’, ’000326498100002’); · Zbl 1401.14100
[32] 32. K. Yoshioka, Stability and the Fourier-Mukai transform II, Compos. Math.145(1) (2009) 112-142. genRefLink(16, ’S0129167X16500075BIB032’, ’10.1112
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.