×

The local point interpolation-boundary element method: application to 3D stationary thermo-piezoelectricity. (English) Zbl 1359.74462

Summary: This paper presents a simple strategy allowing to adapt well-established isotropic BEM approach for the solution of multi-physics problems with anisotropic material parameters. The method is based on the partition of the primary kinematical fields into complementary and particular parts. The isotropic linear equations for the complementary fields are solved by the conventional boundary element method. The particular fields are obtained by a point collocation of a strong form differential equation. Adopting local radial point interpolation, the effectiveness of the approach is proved by considering various examples of stationary thermal conduction, thermos-elasticity and thermos-piezoelectricity.

MSC:

74S15 Boundary element methods applied to problems in solid mechanics
65N38 Boundary element methods for boundary value problems involving PDEs
65N35 Spectral, collocation and related methods for boundary value problems involving PDEs
74F05 Thermal effects in solid mechanics
74F15 Electromagnetic effects in solid mechanics
Full Text: DOI

References:

[1] Aouadi, M. [2006] ” Generalized thermo-piezoelectric problems with temperature-dependent properties,” Int. J. Solids Struct.43, 6347-6358. genRefLink(16, ’S0219876216500031BIB001’, ’10.1016 · Zbl 1120.74439
[2] Atluri, S. N. and Zhu, T. [1998] ” A new meshless local Petrov-Galerkin (MLPG) approach in computational mechanics,” Comput. Mech.22, 117-127. genRefLink(16, ’S0219876216500031BIB002’, ’10.1007 · Zbl 0932.76067
[3] Balaš, J. [1989] Stress Analysis by Boundary Element Methods (Elsevier, Amsterdam, New York).
[4] Barnett, D. M. [1972] ” The precise evaluation of derivatives of the anisotropic elastic Green’s functions,” Phys. Status Solids B49, 741-748. genRefLink(16, ’S0219876216500031BIB004’, ’10.1002
[5] Belytschko, T., Lu, Y. Y. and Gu, L. [1994] ” Element-free Galerkin methods,” Int. J. Numer. Meth. Eng.37, 229-256. genRefLink(16, ’S0219876216500031BIB005’, ’10.1002
[6] Bonnet, M. [1999] Boundary Integral Equation Methods for Solids and Fluids (John Wiley & Sons, New York).
[7] Brebbia, C. A. and Dominguez, J. [1992] Boundary Elements: An Introductory Course (WIT Press, Southampton).
[8] Chen, T. and Lin, F. Z. [1995] ” Boundary integral formulations for three dimensional anisotropic piezoelectric solids,” Comput. Mech.15, 485-496. genRefLink(16, ’S0219876216500031BIB008’, ’10.1007
[9] Dai, H. L. and Wang, X. [2006] ” Magneto-thermo-electro-elastic transient response in a piezoelectric hollow cylinder subjected to complex loadings,” International Journal of Solids and Structures43, 5628-5646. genRefLink(16, ’S0219876216500031BIB009’, ’10.1016 · Zbl 1120.74459
[10] Dai, K. Y., Liu, G. R., Lim, K. M., Han, X. and Du, S. Y. [2004] ” A meshfree radial point interpolation method for analysis of functionally graded material (FGM) plates,” Comput. Mech.34, 213-223. genRefLink(16, ’S0219876216500031BIB010’, ’10.1007 · Zbl 1138.74417
[11] Gray, L. J., Griffith, A., Johnson, L. and Wawrzynek, P. A. [2003] ” Evaluation of Galerkin singular integrals for anisotropic elasticity: Displacement equation,” Electron. J. Bound. Elem.1, 68-94.
[12] Gu, Y. T. and Liu, G. R. [2002] ” A boundary point interpolation method for stress analysis of solids,” Comput. Mech.28, 47-54. genRefLink(16, ’S0219876216500031BIB012’, ’10.1007
[13] Gu, Y. T. and Liu, G. R. [2003] ” Hybrid boundary point interpolation methods and their coupling with the element free Galerkin method,” Eng. Anal. Bound. Elem.27, 905-917. genRefLink(16, ’S0219876216500031BIB013’, ’10.1016 · Zbl 1060.74651
[14] Hon, Y. C., Lu, M. W., Xue, W. M. and Zhu, Y. M. [1997] ” Multiquadric method for the numerical solution of a biphasic mixture model,” Appl. Math. Comput.88, 153-175. genRefLink(16, ’S0219876216500031BIB014’, ’10.1016
[15] Katsikadelis, J. T. and Nerantzaki, M. S. [1999] ” The boundary element method for nonlinear problems,” Eng. Anal. Bound. Elem.23, 365-373. genRefLink(16, ’S0219876216500031BIB015’, ’10.1016
[16] Kouitat Njiwa, R. [2011] ” Isotropic-BEM coupled with a local point interpolation method for the solution of 3D-anisotropic elasticity problems,” Eng. Anal. Bound. Elem.35, 611-615. genRefLink(16, ’S0219876216500031BIB016’, ’10.1016 · Zbl 1259.74057
[17] Lee, V.-G. [2003] ” Explicit expression of derivatives of elastic Green’s functions for general anisotropic materials,” Mech. Res. Commun.30, 241-249. genRefLink(16, ’S0219876216500031BIB017’, ’10.1016
[18] Liu, G. R. and Gu, Y. T. [2001] ” A local radial point interpolation method (LRPIM) for free vibration analyses of 2-D solids,” J. Sound. Vib.246, 29-46. genRefLink(16, ’S0219876216500031BIB018’, ’10.1006
[19] Liu, G. R. and Gu, Y. T. [2003] ” A meshfree method: Meshfree weak-strong (MWS) form method, for 2-D solids,” Comput. Mech.33, 2-14. genRefLink(16, ’S0219876216500031BIB019’, ’10.1007 · Zbl 1063.74105
[20] Liu, G. R. and Gu, Y. T. [2004] ” Boundary meshfree methods based on the boundary point interpolation methods,” Eng. Anal. Bound. Elem.28, 475-487. genRefLink(16, ’S0219876216500031BIB020’, ’10.1016
[21] Liu, G. R., Dai, K. Y., Lim, K. M. and Gu, Y. T. [2002] ” A point interpolation mesh free method for static and frequency analysis of two-dimensional piezoelectric structures.” Comput. Mech.29, 510-519. genRefLink(16, ’S0219876216500031BIB021’, ’10.1007 · Zbl 1146.74371
[22] Liu, W. K., Jun, S., Li, S., Adee, J. and Belytschko, T. [1995] ” Reproducing kernel particle methods for structural dynamics,” Int. J. Numer. Meth. Eng.38, 1655-1679. genRefLink(16, ’S0219876216500031BIB022’, ’10.1002 · Zbl 0840.73078
[23] Nerantzaki, M. and Kandilas, C. [2008] ” A boundary element method solution for anisotropic nonhomogeneous elasticity,” Acta Mech.200, 199-211. genRefLink(16, ’S0219876216500031BIB023’, ’10.1007
[24] Schwartz, M., Niane, N. T. and Kouitat Njiwa, R. [2012] ” A simple solution method to 3D integral nonlocal elasticity: Isotropic-BEM coupled with strong form local radial point interpolation,” Eng. Anal. Bound. Elem.36, 606-612. genRefLink(16, ’S0219876216500031BIB024’, ’10.1016 · Zbl 1351.74132
[25] Shang, F. and Kuna, M. [2003] ” Thermal stress around a penny-shaped crack in a thermopiezoelectric solid,” Comput. Mater. Sci.26, 197-201. genRefLink(16, ’S0219876216500031BIB025’, ’10.1016
[26] Shang, F., Wang, Z. and Li, Z. [1996] ” Thermal stresses analysis of a three-dimensional crack in a thermopiezoelectric solid,” Eng. Fract. Mech.55, 737-750. genRefLink(16, ’S0219876216500031BIB026’, ’10.1016
[27] Shiah, Y. C. and Tan, C. L. [2012] ” Boundary element method for thermoelastic analysis of three-dimensional transversely isotropic solids,” Int. J. Solids Struct.49, 2924-2933. genRefLink(16, ’S0219876216500031BIB027’, ’10.1016
[28] Sladek, J., Sladek, V., Tan, C. L. and Atluri, S. N. [2008a] ” Analysis of transient heat conduction in 3d anisotrpic functionally graded solids, by the MLPG method,” Comput. Model. Eng. Sci.32, 161-174. genRefLink(128, ’S0219876216500031BIB028’, ’000260914900003’); · Zbl 1232.80006
[29] Sladek, V., Sladek, J. and Zhang, C. [2008b] ” Computation of stresses in non-homogeneous elastic solids by local integral equation method: A comparative study,” Comput. Mech.41, 827-845. genRefLink(16, ’S0219876216500031BIB029’, ’10.1007 · Zbl 1142.74051
[30] Thurieau, N., Kouitat Njiwa, R. and Taghite, M. [2012] ” A simple solution procedure to 3D-piezoelectric problems: Isotropic BEM coupled with a point collocation method,” Eng. Anal. Bound. Elem.36, 1513-1521. genRefLink(16, ’S0219876216500031BIB030’, ’10.1016 · Zbl 1351.74140
[31] Vogel, S. M. and Rizzo, F. J. [1973] ” An integral equation formulation of three dimensional anisotropic elastostatic boundary value problems,” J. Elast.3, 203-216. genRefLink(16, ’S0219876216500031BIB031’, ’10.1007
[32] Zheng, X. J., Zhou, Y. C. and Nin, M. Z. [2002] ” Thermopiezoelectric response of a piezoelectric thin film PZT-6B deposited on MgO(1 0 0) substrate due to a continuous laser,” Int. J. Solids Struct.39, 3935-3957. genRefLink(16, ’S0219876216500031BIB032’, ’10.1016 · Zbl 1049.74560
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.