×

Numerical study of three-dimensional Turing patterns using a meshless method based on moving Kriging element free Galerkin (EFG) approach. (English) Zbl 1359.65199

Summary: In this paper a numerical procedure is presented for solving a class of three-dimensional Turing system. First, we discrete the spatial direction using element free Galerkin (EFG) method based on the shape functions of moving Kriging interpolation. Then, to achieve a high-order accuracy, we use the fourth-order exponential time differencing Runge-Kutta (ETDRK4) method. Using this discretization for the temporal dimension, we obtain an explicit scheme and do not need to solve nonlinear system of equations. The EFG method uses a weak form of the considered equation that is similar to the finite element method with the difference that in the EFG method test and trial functions are moving least squares approximation (MLS) shape functions. Since the shape functions of moving least squares (MLS) approximation do not have Kronecker delta property, we cannot implement the essential boundary condition, directly. Also building shape functions of MLS approximation is a time consuming procedure. Because of the mentioned reasons we employ the shape functions of moving Kriging interpolation technique which have the mentioned property and less CPU time is required for building them. For testing this method on three-dimensional PDEs, we select some equations and system of PDEs such as Allen-Cahn, Gray-Scott, Ginzburg-Landau, Brusselator models, predator-prey model with additional food supply to predator. Several test problems are solved and numerical simulations are reported which confirm the efficiency of the proposed scheme.

MSC:

65M60 Finite element, Rayleigh-Ritz and Galerkin methods for initial value and initial-boundary value problems involving PDEs
65M20 Method of lines for initial value and initial-boundary value problems involving PDEs
65M70 Spectral, collocation and related methods for initial value and initial-boundary value problems involving PDEs
92C15 Developmental biology, pattern formation
Full Text: DOI

References:

[1] Noor, M. A.; Noor, K. I.; Waheed, A.; Al-Said, E. A., Some new solitonary solutions of the modified Benjamin-Bona-Mahony equation, Comput. Math. Appl., 62, 2126-2131 (2011) · Zbl 1231.35210
[2] Shakeri, F.; Dehghan, M., The finite volume spectral element method to solve Turing models in the biological pattern formation, Comput. Math. Appl., 62, 4322-4336 (2011) · Zbl 1236.65118
[4] Shokri, A.; Dehghan, M., A meshless method using radial basis functions for the numerical solution of two-dimensional complex Ginzburg-Landau equation, Comput. Model. Eng. Sci. (CMES), 84, 333-358 (2012) · Zbl 1357.65202
[5] Gao, H.; Sun, W., An efficient fully linearized semi-implicit Galerkin-mixed FEM for the dynamical Ginzburg-Landau equations of superconductivity, J. Comput. Phys., 294, 329-345 (2015) · Zbl 1349.65450
[6] Yan, Y.; Moxley, F. I.; Dai, W., A new compact finite difference scheme for solving the complex Ginzburg-Landau equation, Appl. Math. Comput., 260, 269-287 (2015) · Zbl 1410.65332
[7] Sadovskyy, I. A.; Koshelev, A. E.; Phillips, C. L.; Karpeyev, D. A.; Glatz, A., Stable large-scale solver for Ginzburg-Landau equations for superconductors, J. Comput. Phys., 294, 639-654 (2015) · Zbl 1349.82116
[8] Li, J.; Shi, J., Bifurcations and exact solutions of ac-driven complex Ginzburg-Landau equation, Appl. Math. Comput., 221, 102-110 (2013) · Zbl 1329.35300
[9] Jiang, W.; Tang, Q., Numerical study of quantized vortex interaction in complex Ginzburg-Landau equation on bounded domains, Appl. Math. Comput., 222, 210-230 (2013) · Zbl 1329.35299
[10] Allen, S. M.; Cahn, J. W., Ground state structures in ordered binary alloys with second neighbor interactions, Acta Metall., 20, 423-433 (1972)
[11] Allen, S. M.; Cahn, J. W., A correction to the ground state of FCC binary ordered alloys with first and second neighbor pairwise interactions, Scr. Metall., 7, 1261-1264 (1973)
[13] Zhai, S.; Feng, X.; He, Y., Numerical simulation of the three dimensional Allen-Cahn equation by the high-order compact ADI method, Comput. Phys. Comm., 185, 2449-2455 (2014) · Zbl 1360.35100
[14] Zhai, S.; Weng, Z.; Feng, X., Investigations on several numerical methods for the non-local Allen-Cahn equation, Int. J. Heat Mass Transfer, 87, 111-118 (2015)
[15] Vaz, C. L.D.; Diniz, H. A.C., Steady states solutions of Allen-Cahn equation by computer algebra, Appl. Math. Comput., 252, 240-248 (2015) · Zbl 1338.35007
[16] Shin, J.; Park, S. K.; Kim, J., A hybrid FEM for solving the Allen-Cahn equation, Appl. Math. Comput., 244, 606-612 (2014) · Zbl 1336.65170
[17] Lee, H. G.; Lee, J. Y., A semi-analytical Fourier spectral method for the Allen-Cahn equation, Comput. Math. Appl., 68, 174-184 (2014) · Zbl 1369.65128
[18] Lee, H. G.; Kim, J., An efficient and accurate numerical algorithm for the vector-valued Allen-Cahn equations, Comput. Phys. Comm., 183, 2107-2115 (2012) · Zbl 1298.65144
[19] Li, Y.; Lee, H. G.; Jeong, D.; Kim, J., An unconditionally stable hybrid numerical method for solving the Allen-Cahn equation, Comput. Math. Appl., 60, 1591-1606 (2010) · Zbl 1202.65112
[20] Barrio, S. R.; Varea, C.; Aragn, J.; Maini, P., A two-dimensional numerical study of spatial pattern formation in interacting systems, Bull. Math. Biol., 61, 483-505 (1999) · Zbl 1323.92026
[21] Baurmanna, M.; Gross, T.; Feudel, U., Instabilities in spatially extended predatorprey systems: spatio-temporal patterns in the neighborhood of Turing-Hopf bifurcations, J. Theoret. Biol., 245, 220-229 (2007) · Zbl 1451.92248
[22] Crampin, E.; Gaffney, E.; Maini, P., Reaction and diffusion on growing domains: Scenarios for robust pattern formation, J. Math. Biol., 61, 1093-1120 (1999) · Zbl 1323.92028
[23] Ferreira, S.; Martins, M.; Vilela, M., Reaction-diffusion model for the growth of avascular tumor, Phys. Rev., 65, 1467-1476 (2002)
[24] Garzón-Alvarado, D.; Galeano, C.; Mantilla, J., Turing pattern formation for reaction-convection-diffusion systems in fixed domains submitted to toroidal velocity fields, Appl. Math. Model., 35, 4913-4925 (2011) · Zbl 1228.76154
[25] Madzvamuse, A.; Maini, P., Velocity-induced numerical solution of reaction-diffusion systems on continuously growing domains, J. Comput. Phys., 225, 100-119 (2007) · Zbl 1122.65076
[26] Madzvamuse, A.; Thomas, R.; Maini, P.; Wathen, A., A numerical approach to the study of spatial pattern formation in the ligaments of arcoid bivalves, Bull. Math. Biol., 64, 501-530 (2002) · Zbl 1334.92039
[27] Madzvamuse, A.; Wathen, A.; Maini, P., A moving grid finite element method applied to a model biological pattern generator, J. Comput. Phys., 190, 478-500 (2003) · Zbl 1029.65113
[28] Madzvamuse, A.; Wathen, A.; Maini, P., A moving grid finite element method for the simulation of pattern generation by Turing models on growing domains, J. Sci. Comput., 24, 247-262 (2005) · Zbl 1080.65091
[29] Madzvamuse, A.; Gaffney, E. A.; Maini, P. K., Stability analysis of non-autonomous reaction-diffusion systems: the effects of growing domains, J. Math. Biol., 61, 133-164 (2010) · Zbl 1202.92010
[30] Madzvamuse, A., A numerical approach to the study of spatial pattern formation (2000), University of Oxford, (Ph.D. thesis)
[31] Madzvamuse, A., Turing instability conditions for growing domains with divergence free mesh velocity, Nonlinear Anal.: Theory Methods Appl., 71, e2250-e2257 (2009) · Zbl 1239.35167
[32] Sekimura, T.; Madzvamuse, A.; Wathen, A.; Maini, P., A model for colour pattern formation in the butterfly wing of Papilio dardanus, Proc. R. Soc. Lond. Ser. B, 26, 852-859 (2000)
[33] Maini, P. K.; Woolley, T. E.; Baker, R. E.; Gaffney, E. A.; Lee, S. S., Turing’s model for biological pattern formation and the robustness problem, Interface Focus, 2, 487-496 (2012)
[34] Tatari, M.; Kamranian, M.; Dehghan, M., The finite point method for reaction-diffusion systems in developmental biology, Comput. Model. Eng. Sci. (CMES), 82, 1-27 (2011) · Zbl 1357.65137
[35] Sladek, V.; Sladek, J.; Shirzadi, A., The local integral equation method for pattern formation simulations in reaction-diffusion systems, Eng. Anal. Bound. Elem., 50, 329-340 (2015) · Zbl 1403.65100
[36] Guin, L. N.; Mandal, P. K., Spatiotemporal dynamics of reaction-diffusion models of interacting populations, Appl. Math. Model., 38, 4417-4427 (2014) · Zbl 1428.92086
[37] Ma, Z. P., Stability and Hopf bifurcation for a three-component reaction-diffusion population model with delay effect, Appl. Math. Model., 37, 5984-6007 (2013) · Zbl 1288.35053
[38] Wu, S. L.; Liu, S. Y., Asymptotic speed of spread and traveling fronts for a nonlocal reaction-diffusion model with distributed delay, Appl. Math. Model., 33, 2757-2765 (2009) · Zbl 1205.35150
[39] Shoji, H.; Yamada, K.; Ueyama, D.; Ohta, Takao, Turing patterns in three dimensions, Phys. Rev. E, 75, Article 046212 pp. (2007)
[40] Gu, A.; Zhou, S.; Wang, Z., Uniform attractor of non-autonomous three-component reversible Gray-Scott system, Appl. Math. Comput., 219, 8718-8729 (2013) · Zbl 1292.35057
[41] Jia, X.; Zhao, C.; Yang, X., Global attractor and Kolmogorov entropy of three component reversible Gray-Scott model on infinite lattices, Appl. Math. Comput., 218, 9781-9789 (2012) · Zbl 1264.34018
[42] Wang, W.; Lin, Y.; Yang, F.; Zhang, L.; Tan, Y., Numerical study of pattern formation in an extended Gray-Scott model, Commun. Nonlinear Sci. Numer. Simul., 16, 2016-2026 (2011) · Zbl 1221.35456
[43] Zhang, K.; Wong, J. C.F.; Zhang, R., Second-order implicit-explicit scheme for the Gray-Scott model, J. Comput. Appl. Math., 213, 559-581 (2008) · Zbl 1135.65377
[44] Hale, J. K.; Peletier, L. A.; Troy, W. C., Exact homoclinic and heteroclinic solutions of the Gray-Scott model for autocatalysis, SIAM J. Appl. Math., 61, 1, 102-130 (2006) · Zbl 0965.34037
[45] Lefever, R., Dissipative structures in chemical systems, J. Chem. Phys., 49, 4977-4978 (1968)
[46] Prigogine, I.; Lefever, R., Symmetries breaking instabilities in dissipative systems II, J. Phys. Chem., 48, 1695-1700 (1968)
[47] Herschkowitz-Kaufman, M.; Nicolis, N., Localized spatial structures and non-linear chemical waves in dissipative systems, J. Chem. Phys., 56, 1890-1895 (1972)
[48] Lavenda, B.; Nicolis, G.; Herschkowitz-Kaufman, M., Chemical instabilities and relaxation oscillations, J. Theoret. Biol., 32, 283-292 (1971)
[49] Lefever, R.; Nicolis, G., Chemical instabilities and sustained oscillations, J. Theoret. Biol., 30, 267-284 (1971) · Zbl 1170.92344
[50] Mohammadi, M.; Mokhtari, R.; Schaback, R., A meshless method for solving the 2D Brusselator reaction-diffusion system, Comput. Model. Eng. Sci. (CMES), 101, 113-138 (2014) · Zbl 1357.65152
[51] Nicolis, G.; Prigogine, I., Self-Organization in Non-Equilibrium Systems (1977), Wiley Interscience: Wiley Interscience New York · Zbl 0363.93005
[52] Twizell, E. H.; Gumel, A. B.; Cao, Q., A second-order scheme for the “Brusselator” reaction-diffusion system, J. Math. Chem., 26, 297-316 (1999) · Zbl 1016.92049
[53] Islam, S. U.; Ali, A.; Haq, S., A computational modeling of the behavior of the two-dimensional reaction-diffusion Brusselator system, Appl. Math. Model., 34, 3896-3909 (2010) · Zbl 1201.65185
[54] Mittal, R. C.; Jiwari, R., Numerical solution of two-dimensional reaction-diffusion Brusselator system, Appl. Math. Comput., 217, 5404-5415 (2011) · Zbl 1209.65102
[55] Adomian, G., The diffusion-Brusselator equation, Comput. Math. Appl., 29, 1-3 (1995) · Zbl 0827.35056
[56] Ang, W. T., The two-dimensional reaction-diffusion Brusselator system: a dual-reciprocity boundary element solution, Eng. Anal. Bound. Elem., 27, 897-903 (2003) · Zbl 1060.76599
[57] Bhatt, H. P.; Khaliq, A. Q.M., The locally extrapolated exponential time differencing LOD scheme for multidimensional reaction-diffusion systems, J. Comput. Appl. Math., 285, 256-278 (2015) · Zbl 1329.65205
[58] Gu, L., Moving kriging interpolation and element-free Galerkin method, Internat. J. Numer. Methods Engrg., 56, 1-11 (2003) · Zbl 1062.74652
[59] Dehghan, M.; Salehi, R., A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity, Comput. Mech., 52, 6, 1445-1462 (2013) · Zbl 1398.76234
[60] Dehghan, M.; Shirzadi, M., Meshless simulation of stochastic advection-diffusion equations based on radial basis functions, Eng. Anal. Bound. Elem., 53, 18-26 (2015) · Zbl 1403.65086
[61] Dehghan, M.; Mohammadi, V., The numerical solution of Cahn-Hilliard (CH) equation in one, two and three-dimensions via globally radial basis functions (GRBFs) and RBFs-differential quadrature (RBFs-DQ) methods, Eng. Anal. Bound. Elem., 51, 74-100 (2015) · Zbl 1403.65085
[62] Dehghan, M.; Shokri, A., A numerical method for solution of the two-dimensional sine-Gordon equation using the radial basis functions, Math. Comput. Simulation, 79, 3, 700-715 (2008) · Zbl 1155.65379
[63] Belytschko, T.; Lu, Y. Y.; Gu, L., Element free Galerkin methods, Internat. J. Numer. Methods Engrg., 37, 229-256 (1994) · Zbl 0796.73077
[64] Belytschko, T.; Krongauz, Y.; Organ, D.; Fleming, M.; Krysl, P., Meshless methods: An overview and recent developments, Comput. Methods Appl. Mech. Engrg., 139, 3-47 (1996) · Zbl 0891.73075
[65] Lancaster, P.; Salkauskas, K., Surfaces generated by moving least squares methods, Math. Comp., 37, 141-158 (1981) · Zbl 0469.41005
[66] Salehi, R.; Dehghan, M., A moving least square reproducing polynomial meshless method, Appl. Numer. Math., 69, 34-58 (2013) · Zbl 1284.65137
[67] Wendland, H., (Scattered Data Approximation. Scattered Data Approximation, Cambridge Monograph on Applied and Computational Mathematics (2005), Cambridge University Press) · Zbl 1075.65021
[68] Cheng, Y.; Bai, F. N.; Peng, M. J., A novel interpolating element free Galerkin (IEFG) method for two-dimensional elastoplasticity, Appl. Math. Model., 38, 5187-5197 (2014) · Zbl 1449.74196
[69] Zhang, L. W.; Deng, Y. J.; Liew, K. M.; Cheng, Y. M., The improved complex variable eleemnt free Galerkin method for two-dimensional Schrödinger equation, Comput. Math. Appl., 68, 10, 1093-1106 (2014) · Zbl 1367.35141
[70] Zhang, L. W.; Deng, Y. J.; Liew, K. M., An improved element-free Galerkin method for numerical modeling of the biological population problems, Eng. Anal. Bound. Elem., 40, 181-188 (2014) · Zbl 1297.65123
[71] Cheng, Y.; Li, J., A meshless method with complex variables for elasticity, Acta Phys. Sin., 54, 4463-4471 (2005) · Zbl 1202.74163
[72] Cheng, Y.; Peng, M., Boundary element free method for elastodynamics, Sci. China G, 48, 641-657 (2005)
[73] Zhang, Z.; Hao, S. Y.; Liew, K. M.; Cheng, Y. M., The improved element-free Galerkin method for two-dimensional elastodynamics problems, Eng. Anal. Bound. Elem., 37, 1576-1584 (2013) · Zbl 1287.74055
[74] Chung, H. J.; Belytschko, T., An error estimate in the element free Galerkin method, Comput. Mech., 21, 91-100 (1998) · Zbl 0910.73060
[75] Ren, H.; Cheng, Y., The interpolating element-free Galerkin (IEFG) method for two-dimensional potential problems, Eng. Anal. Bound. Elem., 36, 873-880 (2012) · Zbl 1352.65539
[76] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part I: stress recovery and a posteriori error estimation, Comput. Struct., 82, 413-428 (2004)
[77] Lee, C. K.; Zhou, C. E., On error estimation and adaptive refinement for element free Galerkin method Part II: adaptive refinement, Comput. Struct., 82, 429-443 (2004)
[78] Zhang, Z.; Liew, K. M.; Cheng, Y., Coupling of the improved element-free Galerkin and boundary element methods for two-dimensional elasticity problems, Eng. Anal. Bound. Elem., 32, 100-107 (2008) · Zbl 1244.74204
[79] Ponthot, J. P.; Belytschko, T., Arbitrary Lagrangian-Eulerian formulation for element free Galerkin method, Comput. Methods Appl. Mech. Engrg., 152, 19-46 (1998) · Zbl 0961.74079
[80] Dai, K. Y.; Liu, G. R.; Lim, K. M.; Gu, Y. T., Comparison between the radial point interpolation and the Kriging interpolation used in meshfree methods, Comput. Mech., 32, 60-70 (2003) · Zbl 1035.74059
[81] Zheng, B.; Dai, B. D., A meshless local moving Kriging method for two-dimensional solids, Appl. Math. Comput., 218, 563-573 (2011) · Zbl 1275.74033
[82] Tongsuk, P.; Kanok-Nukulchai, W., Further investigation of element free Galerkin method using moving Kriging interpolation, Int. J. Comput. Methods, 01, 345-365 (2004) · Zbl 1179.74182
[83] Bui, T. Q.; Nguyen, M. N., A moving Kriging interpolation-based meshfree method for free vibration analysis of Kirchhoff plates, Comput. Struct., 89, 380-394 (2011)
[84] Bui, T. Q.; Zhang, C., Moving Kriging interpolation-based meshfree method for dynamic analysis of structures, Proc. Appl. Math. Mech., 11, 197-198 (2011)
[85] Bui, T. Q.; Nguyen, M. N.; Zhang, C., A moving Kriging interpolation-based element-free Galerkin method for structural dynamic analysis, Comput. Methods Appl. Mech. Engrg., 200, 1354-1366 (2011) · Zbl 1228.74110
[86] Chen, L.; Liew, K. M., A local Petrov-Galerkin approach with moving Kriging interpolation for solving transient heat conduction problems, Comput. Mech., 47, 455-467 (2011) · Zbl 1241.80005
[87] Li, H.; Wang, Q. X.; Lam, K. Y., Development of a novel meshless Local Kriging (LoKriging) method for structural dynamic analysis, Comput. Methods Appl. Mech. Engrg., 193, 2599-2619 (2004) · Zbl 1067.74598
[88] Gu, Y. T.; Wang, Q. X.; Lam, K. Y., A meshless local Kriging method for large deformation analyses, Comput. Methods Appl. Mech. Engrg., 196, 1673-1684 (2007) · Zbl 1173.74471
[89] Gu, Y. T.; Zhuang, P.; Liu, F., An advanced implicit meshless approach for the non-linear anomalous subdiffusion equation, Comput. Model. Eng. Sci. (CMES), 56, 303-334 (2010) · Zbl 1231.65178
[90] Gu, Y. T.; Liu, G. R., A local point interpolation method for static and dynamic analysis of thin beams, Comput. Methods Appl. Mech. Engrg., 190, 5515-5528 (2001) · Zbl 1059.74060
[91] Gu, Y. T.; Liu, G. R., A boundary point interpolation method for stress analysis of solids, Comput. Mech., 28, 47-54 (2002) · Zbl 1115.74380
[92] Gu, Y. T.; Wang, W.; Zhang, L. C.; Feng, X. Q., An enriched radial point interpolation method (e-RPIM) for analysis of crack tip fields, Eng. Fract. Mech., 78, 175-190 (2011)
[93] Lam, K. Y.; Wang, Q. X.; Li, H., A novel meshless approach Local Kriging (LoKriging) method with two-dimensional structural analysis, Comput. Mech., 33, 235-244 (2004) · Zbl 1067.74074
[94] Zhu, P.; Zhang, L. W.; Liew, K. M., Geometrically nonlinear thermo-mechanical analysis of moderately thick functionally graded plates using a local Petrov-Galerkin approach with moving Kriging interpolation, Compos. Struct., 107, 298-314 (2014)
[95] Dai, B. D.; Cheng, J.; Zheng, B. J., Numerical solution of transient heat conduction problems using improved meshless local Petrov-Galerkin method, Appl. Math. Comput., 219, 10044-10052 (2013) · Zbl 1307.80008
[96] Dai, B. D.; Cheng, J.; Zheng, B. J., A moving Kriging interpolation-based meshless local Petrov-Galerkin method for elastodynamic analysis, Int. J. Appl. Mech., 5, 1, 1350011-1350021 (2013)
[97] Li, X. G.; Dai, B. D.; Wang, L. H., A moving Kriging interpolation-based boundary node method for two-dimensional potential problems, Chin. Phys. B, 19, 12, 120202-120207 (2010)
[98] Dehghan, M.; Abbaszadeh, M.; Mohebbi, A., Meshless local Petrov-Galerkin and RBFs collocation methods for solving 2D fractional Klein-Kramers dynamics equation on irregular domains, Comput. Model. Eng. Sci. (CMES), 107, 6, 481-516 (2015)
[99] Taleei, A.; Dehghan, M., Direct meshless local Petrov-Galerkin method for elliptic interface problems with applications in electrostatic and elastostatic, Comput. Methods Appl. Mech. Engrg., 278, 479-498 (2014) · Zbl 1423.82009
[100] Dehghan, M., Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices, Math. Comput. Simul., 71, 16-30 (2006) · Zbl 1089.65085
[101] Dehghan, M.; Salehi, R., A meshless local Petrov-Galerkin method for the time-dependent Maxwell equations, J. Comput. Appl. Math., 268, 93-110 (2014) · Zbl 1293.65128
[102] Dehghan, M.; Ghesmati, A., Numerical simulation of two-dimensional sine-Gordon solitons via a local weak meshless technique based on the radial point interpolation method (RPIM), Comput. Phys. Commun., 181, 772-786 (2010) · Zbl 1205.65267
[103] Cox, S. M.; Matthews, P. C., Exponential time differencing for stiff systems, J. Comput. Phys., 176, 430-455 (2002) · Zbl 1005.65069
[104] Kassam, A. K.; Trefethen, L. N., Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput., 26, 1214-1233 (2005) · Zbl 1077.65105
[105] Khaliq, A. Q.M.; Martin-Vaquero, J.; Wade, B. A.; Yousuf, M., Smoothing schemes for reaction-diffusion systems with non-smooth data, J. Comput. Appl. Math., 223, 374-386 (2009) · Zbl 1155.65062
[106] Xia, Y.; Xu, Y.; Shu, C. W., Efficient time discretization for local discontinuous Galerkin methods, Discrete Contin. Dyn. Syst. Ser. B, 8, 677-693 (2007) · Zbl 1141.65076
[107] Asante-Asamani, E. O.; Khaliq, A. Q.M.; Wade, B. A., A real distinct poles exponential time differencing scheme for reaction-diffusion systems, J. Comput. Appl. Math., 299, 24-34 (2016) · Zbl 1333.65106
[108] Liang, X.; Khaliq, A. Q.M.; Xing, Y., Fourth order exponential time differencing method with Local discontinuous Galerkin approximation for coupled nonlinear Schrödinger equations, Commun. Comput. Phys., 17, 510-541 (2015) · Zbl 1388.65086
[109] Kuramoto, Y., Chemical Oscillations, Waves and Turbulence (1984), Springer: Springer Berlin · Zbl 0558.76051
[110] Gray, P.; Scott, S. K., Autocatalytic reactions in the isothermal, continuous stirred tank reactor: isolas and other forms of multistability, Chem. Eng. Sci., 38, 29-43 (1983)
[111] Pearson, J. E., Complex patterns in a simple system, Science, 261, 189-192 (1993)
[112] Hu, G.; Qiao, Z.; Tang, T., Moving finite element simulations for reaction-diffusion systems, Adv. Appl. Math. Mech., 4, 365-381 (2012)
[113] Kumar, D.; Chakrabarty, S. P., Additional food Turing patterns for a diffusive predator-prey model, Int. J. Appl. Comput. Math. (2015)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.