×

Geometry of bounded Fréchet manifolds. (English) Zbl 1359.58004

The manifolds referred to in the title of the paper under review are smooth manifolds modeled on Fréchet spaces, for which the values of the coordinate changes are linear operators that satisfy the Lipschitz condition with respect to some complete invariant metrics that define the topology of the model Fréchet spaces. It is well known that the study of locally convex manifolds is more difficult than the study of Banach manifolds, due to the failure of some basic results like the inverse function theorem or local inversion theorem. Nevertheless, one shows in the present paper that in the case of bounded Fréchet manifolds the bounded Fréchet tangent bundle has the structure of a vector bundle, and one also obtains interesting results on the second tangent bundle in the presence of a linear connection.

MSC:

58B25 Group structures and generalizations on infinite-dimensional manifolds
58A05 Differentiable manifolds, foundations
37C10 Dynamics induced by flows and semiflows

References:

[1] M. Aghasi, C.T.J. Dodson, G.N. Galanis and A. Suri, Infinite dimensional second order ordinary differential equations via \(T^2M\) , Nonlin. Anal. 67 (2007), 2829-2838. · Zbl 1122.58007 · doi:10.1016/j.na.2006.09.043
[2] M. Aghasi, A.R. Bahari, C.T.J. Dodson, G.N. Galanis and A. Suri, Second order structures for sprays and connections on Fréchet manifolds , http:// eprints.ma.man.ac.uk/1161, 2008.
[3] C.T.J. Dodson, Some recent work in Fréchet geometry , Balkan J. Geom. Appl. 17 (2012), 6-21. · Zbl 1286.58004
[4] C.T.J. Dodson and G.N. Galanis, Second order tangent bundles of infinite dimensional manifolds , J. Geom. Phys. 52 (2004), 127-136. · Zbl 1076.58002 · doi:10.1016/j.geomphys.2004.02.005
[5] P. Dombrowski, On the geometry of the tangent bundle , J. reine angew. Math. 210 (1962), 73-88. · Zbl 0105.16002 · doi:10.1515/crll.1962.210.73
[6] K. Eftekharinasab, Sard’s theorem for mappings between Fréchet manifolds , Ukrainian Math. J. 62 (2010), 1634-1641. · Zbl 1235.58005 · doi:10.1007/s11253-011-0478-z
[7] P. Flaschel and W. Klingenberg, Riemannsche Hilbert-mannigfaltigkeiten. Periodische Geodätische , Lect. Notes Math. 282 , Springer Verlag, Berlin, 1972. · Zbl 0238.58009 · doi:10.1007/BFb0080917
[8] R.J. Fisher and H.T. Laquer, Second order tangent vectors in Riemannian geometry , J. Korean Math. Soc. 36 (1999), 959-1008. · Zbl 0978.53076
[9] G.N. Galanis, Differential and geometric structure for the tangent bundle of a projective limit manifold , Rend. Sem. Mat. Padova 112 (2004), 103-115. · Zbl 1121.58007
[10] H. Glöckner, Implicit functions from topological vector spaces in the presence of metric estimates ., 2006.
[11] R.S. Hamilton, The inverse function theorem of Nash and Moser , Bull. Amer. Math. Soc. 7 (1982), 65-222. · Zbl 0499.58003 · doi:10.1090/S0273-0979-1982-15004-2
[12] S. Kobayashi, Theory of connection , Ann. Mat. Pura Appl. 43 (1957), 119-194. · Zbl 0124.37604 · doi:10.1007/BF02411907
[13] K. Kriegl and P.W. Michor, The convenient setting of global analysis , Math. Surv. Mono. 53 , American Mathematical Society 1997. · Zbl 0889.58001
[14] S. Lang, Differential and Riemannian manifolds , Grad. Texts Math. 160 , Springer-Verlag, New York, 1995. · Zbl 0824.58003
[15] P. Libermann and C.M. Marle, Symplectic geometry and analytical mechanics , D. Reidel Publishing Company, Dordrecht, 1987. · Zbl 0643.53002
[16] P.W. Michor, Manifolds of differentiable mappings , Shiva Math. 3 , Shiva Publishing, Orpington, UK, 1980. · Zbl 0433.58001
[17] O. Müller, A metric approach to Fréchet geometry , J. Geom. Phys. 58 (2008), 1477-1500. · Zbl 1155.58002 · doi:10.1016/j.geomphys.2008.06.004
[18] E. Vassiliou, Transformations of linear connections , Per. Math. Hungar. 13 (1982), 289-308. · Zbl 0525.53044 · doi:10.1007/BF01849241
[19] J. Vilms, Connections on tangent bundles , J. Diff. Geom. 1 (1967), 235-243. · Zbl 0162.53603
[20] K. Yano and S. Ishihara, Differential geometry of tangent bundles of order two , Kodai Math. Sem. 20 (1968), 318-354. · Zbl 0167.19703 · doi:10.2996/kmj/1138845701
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.