×

On a class of Finsler metrics of scalar flag curvature. (English) Zbl 1359.53015

Let \(M\) be a smooth manifold of dimension \(n\). A Finsler metric having the form \(F =\alpha\phi(b^2, s);\,\, s:= \frac{\beta}{\alpha}\), is called a general \((\alpha,\beta)\)-metric, where \(\alpha= \sqrt {a_{ij}(x)y^iy^j}\) is a Riemannian metric, \(\beta = b_i(x)y^i\) is a 1-form on \(M\) and \(b:= b(x) = ||\beta(x)||_\alpha\) is the norm of \(\beta\) with respect to \(\alpha\). In particular, if \(\phi_1 = 0\), the metric \(F\) reduces to the usual \((\alpha,\beta)\)-metric \(F = \alpha\phi(s)\). A Finsler metric \(F\) on \(M\) is said to be locally projectively flat if at any point of \(M\), there is a local coordinate system in which \(F\) is projectively flat. It is known that every locally projectively flat Finsler metric is of scalar flag curvature. However, the converse is not true. The author of the present paper is concerned with this converse. He tries to characterize Finsler metrics of scalar (resp. constant) flag curvature for a certain class of general \((\alpha,\beta)\)-metrics. He proves that a class of general \((\alpha,\beta)\)-metrics satisfying certain conditions is of scalar flag curvature if and only if it is locally projectively flat. Moreover, he finds a system of nonlinear partial differential equations characterizing the above class of general \((\alpha,\beta)\)-metrics such that it is of scalar (resp. constant) flag curvature and determines its local structure by solving these equations. As an application, the author obtains some non-projectively flat Finsler metrics of scalar (resp. constant) flag curvature.

MSC:

53B40 Local differential geometry of Finsler spaces and generalizations (areal metrics)
53C60 Global differential geometry of Finsler spaces and generalizations (areal metrics)
Full Text: DOI

References:

[1] Berwald, L.: Über die n-dimensionalen Geometrien konstanter Krümmung, in denen die Deraden die kürzesten sind. Math.Z. 30, 449-469 (1929) · JFM 55.0405.14
[2] Bao D., Shen Z., Robles C.: Zermelo navigation on Riemannian manifolds. J. Differ. Geom. 66, 377-435 (2004) · Zbl 1078.53073
[3] Bryant, R.: Finsler structures on the 2-Sphere Satisfying \[{K = 1}K=1\], Finsler Geometry, Contemporary Mathematics, vol. 196, pp. 27-42. Amer. Math. Soc., Providence (1996) · Zbl 0864.53054
[4] Chern S.S., Shen Z.: Riemannian-Finsler Geometry. World Scientific Publisher, Singapore (2005) · Zbl 1085.53066 · doi:10.1142/5263
[5] Huang L., Mo X.: On spherically symmetric Finsler metrics of scalar curvature. J. Geom. Phys. 62, 2279-2287 (2012) · Zbl 1250.53023 · doi:10.1016/j.geomphys.2012.07.005
[6] Matsumoto M.: Projective changes of Finsler metrics and projectively flat Finsler spaces. Tensor N. S. 34, 303-315 (1980) · Zbl 0448.53016
[7] Mo, X., Zhou, L.: The curvatures of spherically symmetric Finsler metrics in \[{\mathbb{R}^n}Rn\]. arXiv:1202.4543v4 [math.DG]. · Zbl 1341.53112
[8] Mo, X., Zhou, L., Zhu, H.: On spherically symmetric Finsler metrics of constant curvature (preprint)
[9] Sevim, E.S., Shen, Z., Ülgen, S.: Spherically Symmetric Finsler Metrics with Constant Ricci and Flag Curvature, vol. 87(3-4), pp. 463-472. Publ. Math., (2015) · Zbl 1363.53067
[10] Li, B., Shen, Z.: On a class of projectively at Finsler metrics (preprint) · Zbl 1078.53073
[11] Shen, Z., Xia, Q.: On a class of Randers metrics of scalar flag curvature. Internat J. Math. 24(7), 1350055 (2013) (9 pp) · Zbl 1280.53024
[12] Shen, Z., Xia, Q.: On a class of Einstein Finsler metrics (preprint) · Zbl 1369.53017
[13] Shen, Z., Yildirim, G.C.: A Characterization of Randers Metrics of Scalar Flag Curvature. Survey in Geometric Analysis and Relativity, ALM, vol. 23, pp. 330-343 (2012) · Zbl 1250.53023
[14] Shen, Z., Yang, G.: On Square Metrics of Scalar Flag Curvature (preprint) · Zbl 1417.53023
[15] Shen Z., Yu C.: On Einstein Square Metrics, vol. 85(3-4), pp. 413-424. Publ. Math, Debrecen (2014) · Zbl 1349.53038
[16] Shen, Z., Yu, C.: On a class of Einstein Finsler metrics. Internat J. Math. 25(4), 1450030 (2014) (18 pp) · Zbl 1293.53027
[17] Xia Q.: On a class of projectively flat Finsler metrics. Differ. Geom. Appl. 44, 1-16 (2016) · Zbl 1338.53047 · doi:10.1016/j.difgeo.2015.10.002
[18] Yu, C.: Deformations and Hilbert’s Fourth Problem. http://arxiv.org/abs/1209.0845 · Zbl 1348.53031
[19] Yu C., Zhu H.: On a new class of Finsler metrics. Differ. Geom. Appl. 29, 244-254 (2011) · Zbl 1215.53029 · doi:10.1016/j.difgeo.2010.12.009
[20] Yu C., Zhu H.: Projectively flat general \[{(\alpha, \, \beta)}\](α,β)-metrics with constant flag curvature. J. Math. Anal. Appl. 429, 1222-1239 (2015) · Zbl 1369.53017 · doi:10.1016/j.jmaa.2015.04.072
[21] Zhou L.: Spherically Symmetric Finsler Metrics in \[{\mathbb{R}^n}Rn\], vol. 80(1-2), pp. 67-77. Publ. Math, Debrecen (2012) · Zbl 1299.53156
[22] Zhu H.: A class of Finsler metrics of scalar flag curvature. Differ. Geom. Appl. 40, 321-331 (2015) · Zbl 1341.53112 · doi:10.1016/j.difgeo.2015.02.011
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.