×

Strongly continuous and locally equi-continuous semigroups on locally convex spaces. (English) Zbl 1359.47035

The study of Markov processes on complete separable metric spaces \((E,d)\) naturally leads to transition semigroups on the space \(C_b(E)\) which are not strongly continuous with respect to the norm of this space. The authors consider locally equi-continuous strongly continuous semigroups on locally convex spaces \((X,\tau)\) which are also equipped with a suitable auxiliary norm. Let \(\mathcal{N}\) denote the set of \(\tau\)-continuous semi-norms which are bounded by the norm. If \((X,\tau)\) has the property that \(\mathcal{N}\) is closed under countable convex combinations, then a number of results carry over from the Banach space setting to this new setting in a straightforward way. In particular, the authors extend the important Hille-Yosida theorem. The authors go on to relate their results to those which hold for bi-continuous semigroups, showing that, if \(E\) is a Polish space and \(H\) is a Hilbert space, then these results can be applied to semigroups on \((C_b(E),\beta)\) and \((\mathcal{B}(H),\beta)\), where \(\beta\) denotes the respective strict topologies.

MSC:

47D03 Groups and semigroups of linear operators
47D07 Markov semigroups and applications to diffusion processes
46A04 Locally convex Fréchet spaces and (DF)-spaces

References:

[1] Albanese, Angela, Bonet, José, Ricker, Werner: Mean ergodic semigroups of operators. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas 106(2), 299-319 (2012) · Zbl 1283.47016
[2] Albanese, Angela, Kühnemund, Franziska: Trotter-Kato approximation theorems for locally equicontinuous semigroups. Riv. Mat. Univ. Parma 7(1), 19-53 (2002) · Zbl 1055.47036
[3] Albanese, Angela A., Mangino, Elisabetta: Trotter-Kato theorems for bi-continuous semigroups and applications to Feller semigroups. J. Math. Anal. Appl. 289(2), 477-492 (2004) · Zbl 1071.47043 · doi:10.1016/j.jmaa.2003.08.032
[4] Beatty, T.A., Schaefer, H.H.: Semi-bornological spaces. Mathematische Zeitschrift 221(1), 337-351 (1996) · Zbl 0842.46001 · doi:10.1007/BF02622119
[5] Bonet, J., Pèrez Carreras, P.: Barrelled Locally Convex Spaces. Elsevier Science Publishers B.V., Amsterdam (1987) · Zbl 0614.46001
[6] Bratelli, Ola, Robinson, Derek W.: Operator Algebras and Quantum Statistical Mechanics I. Springer, New York (1979) · Zbl 0421.46048 · doi:10.1007/978-3-662-02313-6
[7] Busby, Robert C.: Double centralizers and extensions of \[C^{\ast } C\]*-algebras. Trans. Am. Math. Soc. 132, 79-99 (1968) · Zbl 0165.15501
[8] Chernoff, Herman: A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations. Ann. Math. Stat. 23(4), 493-507 (1952). 12 · Zbl 0048.11804 · doi:10.1214/aoms/1177729330
[9] Cooper, J.B.: Saks Spaces and Applications to Functional Analysis, 2nd edn. Elsevier Science Publishers B.V., Amsterdam (1987) · Zbl 0618.46003
[10] Dembart, Benjamin: On the theory of semigroups of operators on locally convex spaces. J. Funct. Anal. 16(2), 123-160 (1974) · Zbl 0294.47028 · doi:10.1016/0022-1236(74)90061-5
[11] Dennis Sentilles, F.: Bounded continuous functions on a completely regular space. Trans. Am. Math. Soc. 168, 311-336 (1972) · Zbl 0244.46027 · doi:10.1090/S0002-9947-1972-0295065-1
[12] Engel, Klaus-Jochen, Nagel, Rainer: One-Parameter Semigroups for Linear Evolution Equations. Springer, New York (2000) · Zbl 0952.47036
[13] Fagnola, Franco: Quantum Markov semigroups and quantum flows. Proyecciones 18(3), 144 (1999) · Zbl 1255.81185
[14] Farkas, Bálint: Perturbations of bi-continuous semigroups with applications to transition semigroups on Cb(H). Semigroup Forum 68(1), 87-107 (2004) · Zbl 1064.47044 · doi:10.1007/s00233-002-0024-2
[15] Farkas, Bálint: Adjoint bi-continuous semigroups and semigroups on the space of measures. Czechoslov. Math. J. 61(2), 309-322 (2011) · Zbl 1249.47021 · doi:10.1007/s10587-011-0076-0
[16] Goldberg, Seymour: Some properties of the space of compact operators on a Hilbert space. Math. Ann. 138, 329-331 (1959) · Zbl 0086.09902 · doi:10.1007/BF01344152
[17] Kadison, Richard V., Ringrose, John R.: Fundamentals of the Theory of Operator Algebras, vol. 2. Academic Press Inc, Orlando (1986) · Zbl 0601.46054
[18] Kalton, N.J.: Some forms of the Closed graph theorem. Math. Proc. Camb. Philos. Soc. 70, 401-408 (1971) · Zbl 0221.46006
[19] Kōmura, Takako: Semigroups of operators in locally convex spaces. J. Funct. Anal. 2(3), 258-296 (1968) · Zbl 0172.40701
[20] Köthe, Gottfried: Topological Vector Spaces I. Springer, New York (1969) · Zbl 0179.17001
[21] Köthe, Gottfried: Topological Vector Spaces II. Springer, New York (1979) · Zbl 0417.46001 · doi:10.1007/978-1-4684-9409-9
[22] Kühnemund, Franziska: A Hille-Yosida theorem for bi-continuous semigroups. Semigroup Forum 67(2), 205-225 (2003) · Zbl 1064.47040 · doi:10.1007/s00233-002-5000-3
[23] Kunze, Markus: Continuity and equicontinuity of semigroups on norming dual pairs. Semigroup Forum 79(3), 540-560 (2009) · Zbl 1192.47040 · doi:10.1007/s00233-009-9174-9
[24] Kunze, Markus: A Pettis-type integral and applications to transition semigroups. Czechoslov. Math. J. 61(2), 437-459 (2011) · Zbl 1249.46044 · doi:10.1007/s10587-011-0065-3
[25] Lindvall, Torgny: Lectures on the Coupling Method. Dover Publications Inc, Mineola (1992) · Zbl 0850.60019
[26] Ōuchi, Sunao: Semi-groups of operators in locally convex spaces. J. Math. Soc. Japan 25(2), 265-276 (1973). 04 · Zbl 0252.47033 · doi:10.2969/jmsj/02520265
[27] Pfister, Helmut: Bemerkungen zum satz über die separabilität der Fréchet-Montel-räume. Archiv der Math. 27(1), 86-92 (1976) · Zbl 0318.46005 · doi:10.1007/BF01224645
[28] Saxon, Stephen A., Sánchez Ruiz, L.M.: Dual local completeness. Proc. Am. Math. Soc. 125(4), 1063-1070 (1997) · Zbl 0870.46001 · doi:10.1090/S0002-9939-97-03864-1
[29] Takesaki, Masamichi: Theory of Operators Algebras I. Springer, New York, Heidelberg (1979) · Zbl 0436.46043
[30] Taylor, Donald Curtis: The strict topology for double centralizer algebras. Trans. Am. Math. Soc. 150(2), 633-643 (1970) · Zbl 0204.14701 · doi:10.1090/S0002-9947-1970-0290117-2
[31] Treves, François: Distributions and Kernels, Topological Vector Spaces. Academic Press, New York, London (1967) · Zbl 0171.10402
[32] Webb, J.H.: Sequential convergence in locally convex spaces. Math. Proc. Camb. Philos. Soc. 64, 341-364 (1968). 4 · Zbl 0157.20202 · doi:10.1017/S0305004100042900
[33] Wilansky, Albert: Mazur spaces. Int. J. Math. Math. Sci. 4, 39-53 (1981) · Zbl 0466.46005 · doi:10.1155/S0161171281000021
[34] Wiweger, A.: Linear spaces with mixed topology. Studia Math. 20, 47-68 (1961) · Zbl 0097.31301
[35] Yosida, K.: Functional Analysis, 5th edn. Springer, Berlin, New York (1978) · Zbl 0365.46001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.