×

Analytic continuation of Toeplitz operators. (English) Zbl 1359.47022

Let \(f(z)=\sum_\nu f_\nu z^\nu\) be a holomorphic function on the unit ball \({\mathbb B}^n\) in \({\mathbb C}^n\). For \(\alpha\in{\mathbb R}\), R.-H. Zhao and K. Zhu [Mém. Soc. Math. Fr., Nouv. Sér. 115, 1–103 (2008; Zbl 1176.32001)] considered \(\|f\|_{\alpha,\#}^2:=\sum_\nu\frac{\nu!}{|\nu|!}\frac{|f_\nu|^2}{(|\nu|+1)^{\alpha+n}}\) and \(A_{\alpha,\#}^2:=\{f \text{ holomorphic on }{\mathbb B}^n:\|f\|_{\alpha,\#}<\infty\}\). These spaces are isomorphic to the Bergman spaces \(A_\alpha^2\) for \(\alpha>-n-1\). Let \(T_\varphi^{(\alpha)}f=P_\alpha(\varphi f)\), \(\alpha>-1\), be the Toeplitz operator with symbol \(\varphi\in L^\infty({\mathbb B}^n)\), where \(P_\alpha:L^2({\mathbb B}^n,d\mu_\alpha)\to A_\alpha^2\) is the orthogonal projection. It may happen that \(T_\varphi^{(\alpha)}f\), for \(f\) in some dense subset, is given by an expression depending holomorphically on \(\alpha\), and extends by analyticity to the range \(\alpha>-n-1\). Some properties of such Toeplitz operators in the setting of the Bergman spaces \(A_\alpha^2\) of the unit ball \({\mathbb B}^n\) were studied by K. Chailuek and B. C. Hall [Integral Equations Oper. Theory 66, No. 1, 53–77 (2010; Zbl 1202.47029)]. The aim of the paper under review is to study the corresponding questions in the setting of smoothly bounded strictly pseudoconvex domains \(\Omega\) in \({\mathbb C}^n\). Assume that \(\varrho\in C^\infty(\overline{\Omega})\), \(\varrho>0\) on \(\Omega\), and \(\varrho=0\), \(\nabla\varrho\neq 0\) on \(\partial\Omega\). For \(\alpha<-1\), consider \(A_{\alpha,\varrho}^2(\Omega)=\{f\in L^2(\Omega,c_{\alpha,\varrho}\varrho^\alpha dz): f \text{ holomorphic on }\Omega\}\), where \(c_{\alpha,\varrho}=\left(\int_\Omega\varrho^\alpha dz\right)^{-1}\). Generalizing results by M. Vergne and H. Rossi [Acta Math. 136, 1–59 (1976; Zbl 0356.32020)], the authors define and study the corresponding family of spaces \(A_{\alpha,\#}^2(\Omega)\) for \(\alpha\in{\mathbb R}\). Toeplitz operators \(T_\varphi^{(\alpha,\varrho)}\), \(\varphi\in L^\infty(\Omega)\), defined on \(A_{\alpha,\varrho}^2(\Omega)\) then can also be “analytically continued” to \(A_{\alpha\,\#}^2(\Omega)\), \(\alpha\in{\mathbb R}\). The existence of such analytic continuation is established. Still further extensions to Sobolev spaces of holomorphic functions are also considered.

MSC:

47B35 Toeplitz operators, Hankel operators, Wiener-Hopf operators
32A36 Bergman spaces of functions in several complex variables
32W25 Pseudodifferential operators in several complex variables
Full Text: DOI

References:

[1] Arazy, J.: A survey of invariant Hilbert spaces of analytic functions on bounded symmetric domains, Multivariable operator theory. In: Curto, R.E., Douglas, R.G., Pincus, J.D., Salinas, N. (eds.), Contemporary Mathematics, vol. 185, pp. 7-65, American Mathematical Society, Providence (1995) · Zbl 0324.53049
[2] Arazy, J., Upmeier, H.: Invariant inner products in spaces of holomorphic functions on bounded symmetric domains. Doc. Math. 2, 213-261 (1997) · Zbl 0977.46010
[3] Arazy, J., Zhang, G.: Homogeneous multiplication operators on bounded symmetric domains. J. Funct. Anal. 202, 44-66 (2003) · Zbl 1039.47020 · doi:10.1016/S0022-1236(02)00072-1
[4] Aronszajn, N.: Theory of reproducing kernels. Trans. Am. Math. Soc. 68, 337-404 (1950) · Zbl 0037.20701 · doi:10.1090/S0002-9947-1950-0051437-7
[5] Arveson, W.: Subalgebras of \[C^*C\]∗-algebras III: multivariable operator theory. Acta Math. 181, 159-228 (1998) · Zbl 0952.46035 · doi:10.1007/BF02392585
[6] Bagchi, B., Misra, G.: Homogeneous tuples of multiplication operators on twisted Bergman spaces. J. Funct. Anal. 136, 171-213 (1996) · Zbl 0867.47022 · doi:10.1006/jfan.1996.0026
[7] Bateman, H., Erdélyi, A.: Higher transcendental functions, vols. I-III, McGraw-Hill, New York, London, (1953-1955). · Zbl 0432.30016
[8] Beatrous, F.: Estimates for derivatives of holomorphic functions in pseudoconvex domains. Math. Z. 191, 91-116 (1986) · Zbl 0596.32005 · doi:10.1007/BF01163612
[9] Berezin, F.A.: Quantization in complex symmetric spaces. Math. USSR Izv. 9, 341-379 (1975) · Zbl 0324.53049 · doi:10.1070/IM1975v009n02ABEH001480
[10] Boutet de Monvel, L.: On the index of Toeplitz operators in several complex variables. Invent. Math. 50, 249-272 (1979) · Zbl 0398.47018 · doi:10.1007/BF01410080
[11] Boutet de Monvel, L.: Boundary problems for pseudo-differential operators. Acta Math. 126, 11-51 (1971) · Zbl 0206.39401 · doi:10.1007/BF02392024
[12] Boutet de Monvel, L., Guillemin, V.: The Spectral Theory of Toeplitz Operators. vol. 99, Princeton University Press, Princeton (1981) · Zbl 0469.47021
[13] Chailuek, K., Hall, B.C.: Toeplitz operators on generalized Bergman spaces. Integral Eqs. Oper. Theory 66, 53-77 (2010) · Zbl 1202.47029 · doi:10.1007/s00020-009-1734-6
[14] Engliš, M.: Toeplitz operators and weighted Bergman kernels. J. Funct. Anal. 255, 1419-1457 (2008) · Zbl 1155.32001 · doi:10.1016/j.jfa.2008.06.026
[15] Engliš, M.: Analytic continuation of weighted Bergman kernels. J. Math. Pures Appl. 94, 622-650 (2010) · Zbl 1215.32005 · doi:10.1016/j.matpur.2010.08.004
[16] Gohberg, I.C., Krein, M.G.: Introduction to the theory of linear nonselfadjoint operators. Translations of Mathematical Monographs, vol. 18. American Mathematical Society, Providence (1969) · Zbl 0181.13504
[17] Hörmander, L.: The Analysis of Linear Partial Differential Operators, vol. III, Grundlehren der mathematischen Wissenschaften, vol. 274, Springer, New York (1985) · Zbl 0601.35001
[18] Lions, J.-L., Magenes, E.: Problèmes aux Limites Non Homogènes et Applications, vol. 1. Dunod, Paris (1968) · Zbl 0165.10801
[19] Range, R.M.: Holomorphic Functions and Integral Representations in Several Complex Variables. Springer, Berlin (1986) · Zbl 0591.32002 · doi:10.1007/978-1-4757-1918-5
[20] Rossi, H., Vergne, M.: Analytic continuation of the holomorphic discrete series of a semi-simple Lie group. Acta Math. 136, 1-59 (1976) · Zbl 0356.32020 · doi:10.1007/BF02392042
[21] Stegenga, D.A.: Multipliers of the Dirichlet space. Illinois J. Math. 24, 113-139 (1980) · Zbl 0432.30016
[22] Upmeier, H.: Toeplitz Operators and Index Theory in Several Complex Variables, Operator Theory: Advances and Applications, vol. 81. Birkhäuser, Basel (1996) · Zbl 0957.47023
[23] Zhao, R., Zhu, K.: Theory of Bergman Spaces in the Unit Ball of \[\mathbf{C}^nCn\], Mém. Soc. Math. Fr. (N.S.), vol. 115, Gauthier-Villars (2008) · Zbl 1176.32001
[24] Zhu, K.: Holomorphic Besov spaces on bounded symmetric domains. Indiana Univ. Math. J. 44, 1017-1031 (1995) · Zbl 0853.46049 · doi:10.1512/iumj.1995.44.2018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.