×

Relative asymptotics of matrix orthogonal polynomials for Uvarov perturbations: the degenerate case. (English) Zbl 1359.42013

The authors start by reviewing the definitions and details concerning sequences of matrix polynomials \(\{ P_{n}\left( x; \alpha \right) \}_{n \geq 0}\) orthonormal with respect to the following inner product (defined in the linear space of matrix polynomials \(\mathbb{C}^{\left(N,N \right)}[x]\)) \[ \langle P_{n}\left( \alpha \right) ,P_{m} \left( \alpha \right)\rangle_{L} = \int_{\Omega} P_{n}\left( x; \alpha \right) \, d\alpha(x) \, P_{m}\left( x; \alpha \right)^{\ast} =\delta_{n,m} I_{N}\quad n,m=0,1,2,\ldots, \] associated with an \(N \times N\) positive definite matrix \(\alpha(x)\) of measures supported on an infinite subset \(\Omega\) of the real line. In particular, such a sequence \(\{ P_{n}\left( x; \alpha \right) \}_{n \geq 0}\) fulfils the following recurrence relation \[ x P_{n}\left( x; \alpha \right) = A_{n+1}\left( \alpha \right) P_{n+1}\left( x; \alpha \right) + B_{n}\left(\alpha \right)P_{n}\left( x; \alpha \right)+A_{n}^{\ast} \left( \alpha \right)P_{n-1}\left( x; \alpha \right),\; n \geq 0, \] where \(B_{n}= \langle x P_{n}, P_{n} \rangle_{L} = \langle P_{n}, x P_{n} \rangle_{L}=B_{n}^{\ast}, \; n \geq 0,\) and \(A_{n}= \langle x P_{n-1}, P_{n} \rangle_{L},\; n \geq 1.\)
This contribution extends the results previously presented in [the first author, Integral Transforms Spec. Funct. 18, No. 1–2, 39–57 (2007; Zbl 1116.33013); the authors with M. A. Piñar, J. Approx. Theory 111, No. 1, 1–30 (2001; Zbl 1005.42014)] to the situations where:
\(\circ\;\) \( \lim\limits_{ n \rightarrow \infty} A_{n} \left( \alpha \right) = A\) (possibly singular) and \( \lim\limits_{ n \rightarrow \infty} B_{n} \left( \alpha \right) =B \);
\(\circ\;\) there is a sequence \(\{C_{n}\}_{n \geq 0}\) of positive definite matrices fulfilling \[ \lim_{ n \rightarrow \infty} C_{n}^{-1/2} A_{n} C_{n}^{-1/2} = A,\; \lim_{ n \rightarrow \infty} C_{n}^{-1/2} B_{n} C_{n}^{-1/2} = B \text{ and } \lim_{ n \rightarrow \infty} C_{n}^{-1/2} C_{n-1}^{1/2} = I_{N}. \] The relative asymptotics of orthonormal matrix polynomials regarding a varying matrix of measures are also studied.

MSC:

42C05 Orthogonal functions and polynomials, general theory of nontrigonometric harmonic analysis
33C45 Orthogonal polynomials and functions of hypergeometric type (Jacobi, Laguerre, Hermite, Askey scheme, etc.)
Full Text: DOI

References:

[1] Álvarez-Nodarse R., Durán A.J., de los Ríos A.M.: Orthogonal matrix polynomials satisfying second order difference equations. J. Approx. Theory 169, 40-55 (2013) · Zbl 1300.33011 · doi:10.1016/j.jat.2013.02.003
[2] Aptekarev A.I., Nikishin E.M.: The scattering problem for a discrete Sturm-Liouville operator. Mat. USSR Sb. 49, 325-355 (1984) · Zbl 0557.34017 · doi:10.1070/SM1984v049n02ABEH002713
[3] Damanik D., Pushnitski A., Simon B.: The analytic theory of matrix orthogonal polynomials. Surv. Approx. Theory 4, 1-85 (2008) · Zbl 1193.42097
[4] Delgado A.M., Geronimo J.S., Iliev P., Marcellán F.: Two variable orthogonal polynomials and structured matrices. SIAM J. Matrix Anal. Appl. 28(1), 118-147 (2006) · Zbl 1136.42305 · doi:10.1137/05062946X
[5] Delvaux S., Dette H.: Zeros and ratio asymptotics for matrix orthogonal polynomials. J. Anal. Math. 118(2), 657-690 (2012) · Zbl 1273.42026 · doi:10.1007/s11854-012-0047-x
[6] Dette H., Studden W.J.: Quadrature formulas for matrix measures-a geometric approach. Linear Algebra Appl. 364, 33-64 (2003) · Zbl 1019.41020 · doi:10.1016/S0024-3795(02)00532-3
[7] Durán A.J.: Markov ́s theorem for orthogonal matrix polynomials. Can. J. Math. 48, 1180-1195 (1996) · Zbl 0876.42014 · doi:10.4153/CJM-1996-062-4
[8] Durán A.J.: Ratio asymptotic for orthogonal matrix polynomials. J. Approx. Theory 100, 304-344 (1999) · Zbl 0944.42015 · doi:10.1006/jath.1999.3351
[9] Durán A.J.: A method to find weight matrices having symmetric second-order differential operators with matrix leading coefficient. Constr. Approx. 29(2), 181-205 (2009) · Zbl 1169.42312 · doi:10.1007/s00365-008-9038-7
[10] Durán A.J., Daneri-Vias E.: Ratio asymptotic for orthogonal matrix polynomials with unbounded recurrence coefficients. J. Approx. Theory 110, 1-17 (2001) · Zbl 0988.42018 · doi:10.1006/jath.2000.3544
[11] Durán, A.J., Grünbaum, F.A.: Orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 2004(10), 461-484 (2004) · Zbl 1073.33009
[12] Durán, A.J., Grünbaum, F.A.: A characterization for a class of weight matrices with orthogonal matrix polynomials satisfying second-order differential equations. Int. Math. Res. Not. 2005(23), 1371-1390 (2005) · Zbl 1102.42013
[13] Durán A.J., Grünbaum F.A.: Structural formulas for orthogonal matrix polynomials satisfying second-order differential equations. I. Constr. Approx. 22(2), 255-271 (2005) · Zbl 1097.42018 · doi:10.1007/s00365-004-0577-2
[14] Durán F.A., Grünbaum F.A.: A survey on orthogonal matrix polynomials satisfying second order differential equations. J. Comput. Appl. Math. 178(1-2), 169-190 (2005) · Zbl 1060.42017 · doi:10.1016/j.cam.2004.05.023
[15] Durán A.J., Ismail M.E.H.: Differential coefficients of orthogonal matrix polynomials. J. Comput. Appl. Math. 190(1-2), 424-436 (2006) · Zbl 1100.42017 · doi:10.1016/j.cam.2005.02.019
[16] Durán, A.J., de la Iglesia, M.D.: Second-order differential operators having several families of orthogonal matrix polynomials as eigenfunctions. Int. Math. Res. Not. IMRN (2008). (Art. ID rnn 084, 24 pp.) · Zbl 1152.33006
[17] Durán A.J., López-Rodríguez P.: Orthogonal matrix polynomials: zeros and Blumenthaĺs theorem. J. Approx. Theory 84, 96-118 (1996) · Zbl 0861.42016 · doi:10.1006/jath.1996.0007
[18] Durán A.J., Polo B.: Gaussian quadrature formulae for matrix weights. Linear Algebra Appl. 355, 119-146 (2002) · Zbl 1026.41022 · doi:10.1016/S0024-3795(02)00316-6
[19] Durán A.J., de los Ríos A.M.: The convex cone of weight matrices associated to a second-order matrix difference operator. Integr. Transforms Spec. Funct. 25(8), 663-679 (2014) · Zbl 1297.42036 · doi:10.1080/10652469.2014.895343
[20] Durán A.J., Sánchez-Canales V.: Rodrigues’ formulas for orthogonal matrix polynomials satisfying second-order difference equations. Integr. Transforms Spec. Funct. 25(11), 849-863 (2014) · Zbl 1306.33030 · doi:10.1080/10652469.2014.928819
[21] Durán A.J., Van Assche W.: Orthogonal matrix polynomials and higher order recurrence relations. Linear Algebra Appl. 219, 261-280 (1995) · Zbl 0827.15027 · doi:10.1016/0024-3795(93)00218-O
[22] Geronimo J.S.: Scattering theory and the matrix orthogonal polynomials in the real line. Circuits Syst. Signal Process. 1, 471-495 (1982) · Zbl 0506.15010 · doi:10.1007/BF01599024
[23] Krein M.G.: Fundamental aspects of the representation theory of hermitian operators with deficiency index (m,m). Am. Math. Soc. Transl. 2(97), 75-143 (1970) · Zbl 0258.47025
[24] Marcellán F., Yakhlef H.O.: Recent trends on analytic properties of matrix orthonormal polynomials. Electr. Trans. Numer. Anal. 14, 110-123 (2002) · Zbl 1033.42026
[25] Masson D.R., Repka J.: Spectral theory of Jacobi matrices in \[{l^2(\mathbb{Z})}\] l2(Z) and the \[{su(1, 1)}\] su(1,1) Lie algebra. SIAM J. Math. Anal. 22, 1131-1146 (1991) · Zbl 0729.33011 · doi:10.1137/0522073
[26] Sinap A., Van Assche W.: Polynomial interpolation and Gaussian quadrature for matrix valued functions. Linear Algebra Appl. 207, 71-114 (1994) · Zbl 0810.41028 · doi:10.1016/0024-3795(94)90005-1
[27] Yakhlef H.O.: Relative asymptotics for orthogonal matrix polynomials with unbounded recurrence coefficients. Integral Transforms Spec. Funct. 18(1-2), 39-57 (2007) · Zbl 1116.33013 · doi:10.1080/10652460600936104
[28] Yakhlef, H.O., Marcellán, F.: Orthogonal matrix polynomials, connection between recurrences on the unit circle and on a finite interval. In: Lassonde, M. (ed.) Proceedings of the 5th International Conference on Approximation, Optimization and Mathematical Economics, pp. 373-386. Physica Verlag (2000) · Zbl 0985.15020
[29] Yakhlef H.O., Marcellán F., Piñar M.: Perturbations in the Nevai matrix class of orthogonal matrix polynomials. Linear Algebra Appl. 336, 231-254 (2001) · Zbl 0992.15022 · doi:10.1016/S0024-3795(01)00327-5
[30] Yakhlef H.O., Marcellán F., Piñar M.: Relative asymptotics for orthogonal matrix polynomials with convergent recurrence coefficients. J. Approx. Theory 111, 1-30 (2001) · Zbl 1005.42014 · doi:10.1006/jath.2001.3557
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.