×

A concentration phenomenon of the least energy solution to non-autonomous elliptic problems with a totally degenerate potential. (English) Zbl 1359.35031

Summary: In this paper we study the following non-autonomous singularly perturbed Dirichlet problem: \[ \epsilon^2 \Delta u - u + K(x) f(u) = 0, \;u>0 \text{ in } \Omega, \;u = 0 \text{ on } \partial \Omega, \] for a totally degenerate potential \(K\). Here \(\epsilon >0\) is a small parameter, \(\Omega \subset \mathbb{R}^N\) is a bounded domain with a smooth boundary, and \(f\) is an appropriate superlinear subcritical function. In particular, \(f\) satisfies \(0< \liminf_{ t \rightarrow 0+} f(t)/t^q \leq \limsup_{ t \rightarrow 0+} f(t)/t^q < + \infty\) for some \(1< q < + \infty\). We show that the least energy solutions concentrate at the maximal point of the modified distance function \(D(x) = \min \{ ( q+1) d(x, \partial A), 2 d(x, \partial \Omega) \}\), where \(A = \{ x \in \bar{ \Omega } \mid K(x) = \max_{ y \in \bar{ \Omega } } K(y) \}\) is assumed to be a totally degenerate set satisfying \(A^{\circ} \neq \varnothing\).

MSC:

35J20 Variational methods for second-order elliptic equations
35B25 Singular perturbations in context of PDEs
35B40 Asymptotic behavior of solutions to PDEs
Full Text: DOI

References:

[1] M. Badiale, <em>Semilinear Elliptic Equations for Beginners, Existence Results via the Variational Approach</em>,, Universitext (2011) · Zbl 1214.35025 · doi:10.1007/978-0-85729-227-8
[2] H. Berestycki, Equations de champs scalaires euclidiens nonlinéaires dans le plan,, C. R. Acad. Sc. Paris, 297, 307 (1983) · Zbl 0544.35042
[3] H. Berestycki, Nonlinear scalar field equations I, Existence of a ground state,, Arch. Rational Mech. Anal., 82, 313 (1983) · Zbl 0533.35029 · doi:10.1007/BF00250555
[4] J. Byeon, Mountain pass solutions for singularly perturbed nonlinear Dirichlet problems,, J. Differential Equations, 217, 257 (2005) · Zbl 1154.35345 · doi:10.1016/j.jde.2005.07.008
[5] J. Byeon, Singularly perturbed nonlinear Dirichlet problems with a general nonlinearity,, Trans. Amer. Math. Soc., 362, 1981 (2010) · Zbl 1188.35082 · doi:10.1090/S0002-9947-09-04746-1
[6] D. Cao, On the existence and profile of multi-peaked solutions to singularly perturbed semilinear Dirichlet problems,, Discrete Contin. Dynam. Systems, 2, 221 (1996) · Zbl 0947.35073 · doi:10.3934/dcds.1996.2.221
[7] M. del Pino, Spike-layered solutions of singularly perturbed elliptic problems in a degenerate setting,, Indiana Univ. math. J., 48, 883 (1999) · Zbl 0932.35080 · doi:10.1512/iumj.1999.48.1596
[8] M. del Pino, Multi-peak solutions for some singular perturbation problems,, Calc. Var. Partial Differential Equations, 10, 119 (2000) · Zbl 0974.35041 · doi:10.1007/s005260050147
[9] B. Gidas, Symmetry of positive solutions of nonlinear elliptic equations in \(R^n\),, Advances in Math., 7A, 369 (1981) · Zbl 0469.35052
[10] Q. Han, <em>Elliptic Partial Differential Equations</em>,, Second (2011)
[11] E. F. Keller, Initiation of slime mold aggregation viewed as an instability,, J. Theoret. Biol., 26, 399 (1970) · Zbl 1170.92306
[12] S. Kesavan, <em>Symmetrization & Applications</em>,, Series in Analysis (2006) · Zbl 1110.35002 · doi:10.1142/9789812773937
[13] S. Kodama, On a concentration phenomenon of the least energy solution to nonlinear Schrödinger equations with a totally degenerate potential,, preprint.
[14] Y. Y. Li, The Dirichlet problem for singularly perturbed elliptic equations,, Comm. Pure Appl. Math., 51, 1445 (1998) · Zbl 0933.35083 · doi:10.1002/(SICI)1097-0312(199811/12)51:11/12<1445::AID-CPA9>3.3.CO;2-Q
[15] C. S. Lin, Large amplitude stationary solutions to a chemotaxis system,, J. Differential Equations, 72, 1 (1988) · Zbl 0676.35030 · doi:10.1016/0022-0396(88)90147-7
[16] G. Lu, On nonlinear Schrödinger equations with totally degenerate potentials,, C. R. Acad. Sci. Paris Sr. I Math., 326, 691 (1998) · Zbl 0911.35047 · doi:10.1016/S0764-4442(98)80032-3
[17] W. M. Ni, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems,, Comm. Pure Appl. Math., 48, 731 (1995) · Zbl 0838.35009 · doi:10.1002/cpa.3160480704
[18] N. Qiao, Multiplicity results for positive solutions to non-autonomous elliptic problems,, Electron. J. Differential Equations, 28, 1 (1999) · Zbl 0928.35058
[19] X. Ren, Least-energy solutions to a non-autonomous semilinear problem with small diffusion coefficient,, Electronic J. Partial Differential Equations, 5, 1 (1993) · Zbl 0809.35028
[20] G. N. Watson, <em>A Treatise on the Theory of Bessel Functions</em>,, Reprint of the second (1944) edition (1944) · Zbl 0063.08184
[21] J. Wei, On the construction of single-peaked solutions to a singularly perturbed semilinear Dirichlet problem,, J. Differential Equations, 129, 315 (1996) · Zbl 0865.35011 · doi:10.1006/jdeq.1996.0120
[22] C. Zhao, On the number of interior peaks of solutions to a non-autonomous singularly perturbed Neumann problem,, Proc. Roy. Soc. Edinburgh Sect., A139, 427 (2009) · Zbl 1162.35009 · doi:10.1017/S0308210507001229
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.