×

Analog circuit optimization on basis of control theory approach. (English) Zbl 1358.94112

Summary: Purpose{ } - The purpose of this paper is to define the process of analog circuit optimization on the basis of the control theory application. This approach produces many different strategies of optimization and determines the problem of searching of the best strategy in sense of minimal computer time. The determining of the best strategy of optimization and a searching of possible structure of this strategy with a minimal computer time is a principal aim of this work.
Design/methodology/approach{ } - Different kinds of strategies for circuit optimization have been evaluated from the point of view of operations’ number. The generalized methodology for the optimization of analog circuit was formulated by means of the optimum control theory. The main equations for this methodology were elaborated. These equations include the special control functions that are introduced artificially. This approach generalizes the problem and generates an infinite number of different strategies of optimization. A problem of construction of the best algorithm of optimization is defined as a typical problem of the control theory. Numerical results show the possibility of application of this approach for optimization of electronic circuits and demonstrate the efficiency and perspective of the proposed methodology.
Findings{ } - Examples show that the better optimization strategies that are appeared in limits of developed approach have a significant time gain with respect to the traditional strategy. The time gain increases when the size and the complexity of the optimized circuit are increasing. An additional acceleration effect was used to improve the properties of presented optimization process.
Originality/value{ } - The obtained results show the perspectives of new approach for circuit optimization. A large set of various strategies of circuit optimization serves as a basis for searching the better strategies with a minimum computer time. The gain in processor time for the best strategy reaches till several thousands in comparison with traditional approach.

MSC:

94C05 Analytic circuit theory
93B40 Computational methods in systems theory (MSC2010)

Software:

ASTRX/OBLX
Full Text: DOI

References:

[1] Bandler, J.W. , Biernacki, R.M. , Chen, S.H. , Grobelny, P.A. and Hemmers, R.H. (1994), ”Space mapping technique for electromagnetic optimization”, IEEE Transactions on Microwave Theory and Techniques, Vol. 42 No. 12, pp. 2536-2544. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[2] Brayton, R.K. , Hachtel, G.D. and Sangiovanni-Vincentelli, A.L. (1981), ”A survey of optimization techniques for integrated-circuit design”, Proc. IEEE, Vol. 69 No. 10, pp. 1334-1362. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[3] Bunch, J.R. and Rose, D.J. (Eds) (1976), Sparse Matrix Computations, Acad. Press, New York, NY. · Zbl 0333.00007
[4] Carneiro, M.L. , de Carvalho, P.H.P. , Deltimple, N. , da C Brito, L. , de Menezes, L.R. , Kerherve, E. , de Araujo, S.G. and Rocira, A.S. (2011), ”Doherty amplifier optimization using robust genetic algorithm and unscented transform”, Proceedings of Annual IEEE Northeast Workshop CAS, pp. 77-80.
[5] Catoni, O. (1996), ”Metropolis, simulated annealing, and iterated energy transformation algorithms: theory and experiments”, Journal of Complexity, Vol. 12 No. 4, pp. 595-623. , · Zbl 0862.68057 · doi:10.1108/COMPEL-10-2013-0324
[6] Chua, L.O. (1975), Computer-Aided Analysis of Electronic Circuits: Algorithms and Computational Techniques, Prentice-Hall, Englewood Cliffs, NJ. · Zbl 0358.94002
[7] Chua, L.O. , Desoer, C.A. and Kuh, E.S. (1987), Linear and Nonlinear Circuits, McGraw-Hill Education, New York, NY. · Zbl 0631.94017
[8] Costello, J. (2001), ”Delivering quality delivers profits”, Plenary speech in 2001 IEEE 2nd Int. Symp. on Quality Electronic Design, San Jose, CA, p. 23.
[9] Delport, V. (1998), ”Parallel simulated annealing and evolutionary selection for combinatorial optimization”, Electronics Letters, Vol. 34 No. 8, pp. 758-759. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[10] Duff, I.S. and Reid, J.K. (1979), ”Some design features of a sparse matrix code”, ACM Trans. on Mathematical Software, Vol. 5 No. 1, pp. 18-35. · Zbl 0401.65023 · doi:10.1108/COMPEL-10-2013-0324
[11] Fedorenko, R.P. (1978), Approximate Solution of Optimal Control Problems, Nauka, Moscow. · Zbl 0462.49001
[12] Fletcher, R. (1981), Practical Methods of Optimization, John Wiley and Sons, New York, NY. · Zbl 0474.65043
[13] Fletcher, R. and Powell, M.J.D. (1963), ”A rapidly convergent descent method for minimization”, Comput. J., Vol. 6 No. 2, pp. 163-168. , · Zbl 0132.11603 · doi:10.1108/COMPEL-10-2013-0324
[14] George, A. (1984), ”On block elimination for sparse linear systems”, SIAM J. Numer. Anal., Vol. 11 No. 3, pp. 585-603. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[15] Gielen, G. , Walscharts, H. and Sansen, W. (1990), ”Analog circuit design optimization based on symbolic simulation and simulated annealing”, IEEE J. Solid-State Circuits, Vol. 25 No. 6, pp. 707-713. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[16] Gill, P.E. , Murray, W. and Wright, M.H. (1981), Practical Optimization, Academic Press, London. · Zbl 0503.90062
[17] Hamma, B. , Viitanen, S. and Torn, A. (2000), ”Parallel continuous simulated annealing for global optimization”, Optimization Methods and Software, Vol. 13 No. 2, pp. 95-116. , · Zbl 0972.90092 · doi:10.1108/COMPEL-10-2013-0324
[18] He, J.H. (2003), ”Homotopy perturbation method: a new nonlinear analytical technique”, Applied Mathematics and Computation, Vol. 135 No. 1, pp. 73-79. , · Zbl 1030.34013 · doi:10.1108/COMPEL-10-2013-0324
[19] Hershenson, M. , Boyd, S. and Lee, T. (2001), ”Optimal design of a CMOS op-amp via geometric programming”, IEEE Transactions on Computer-Aided Design of Integrated Circuits, Vol. 20 No. 1, pp. 1-21. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[20] Kashirskiy, I.S. and Trokhimenko, Y.K. (1979), General Optimization for Electronic Circuits, Tekhnika, Kiev.
[21] Kirkpatrick, S. , Gelatt, C.D. and Vecchi, M.P. (1983), ”Optimization by simulated annealing”, Science, Vol. 220 No. 4598, pp. 671-680. , · Zbl 1225.90162 · doi:10.1108/COMPEL-10-2013-0324
[22] Koziel, S. , Bandler, J.W. and Madsen, K. (2006), ”Space-mapping-based interpolation for engineering optimization”, IEEE Transactions on Microwave Theory and Techniques, Vol. 54 Nos 6/1, pp. 2410-2421. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[23] Krotov, V.F. (1996), Global Methods in Optimal Control Theory, Marcel Dekker Inc., New York, NY. · Zbl 1075.49500
[24] Krylov, I.A. and Chernousko, F.L. (1972), ”Consecutive approximation algorithm for optimal control problems”, J. of Numer. Math. and Math. Physics, Vol. 12 No. 1, pp. 14-34.
[25] Liao, S. (2004), ”On the homotopy analysis method for nonlinear problems”, Applied Mathematics and Computation, Vol. 147 No. 2, pp. 499-513. , · Zbl 1086.35005 · doi:10.1108/COMPEL-10-2013-0324
[26] Massara, R.E. (1991), Optimization Methods in Electronic Circuit Design, Longman Scientific & Technical, Harlow.
[27] Massobrio, G. and Antognetti, P. (1993), Semiconductor Device Modeling with SPICE, Mc. Graw-Hill Inc., New York, NY.
[28] Melville, R.C. , Trajkovic, L.J. , Fang, S.C. and Watson, L.T. (1993), ”Artificial parameter homotopy methods for the dc operating point problem”, IEEE Trans, on CAD, Vol. 12 No. 6, pp. 861-877. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[29] Nam, D. , Seo, Y. , Park, L. , Park, C. and Kim, B. (2001), ”Parameter optimization of an on-chip voltage reference circuit using evolutionary programming”, IEEE Transactions on Evolutionary Computations, Vol. 5 No. 4, pp. 414-421. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[30] Neustadt, L.W. (1960), ”Synthesis of time-optimal control systems”, J. of Math. Analysis and Applications, Vol. 1 No. 2, pp. 484-492. · Zbl 0100.09903 · doi:10.1108/COMPEL-10-2013-0324
[31] Ochotta, E.S. , Rutenbar, R.A. and Carley, L.R. (1996), ”Synthesis of high-performance analog circuits in ASTRX/OBLX”, IEEE Transactions on Computer-Aided Design of Integrated Circuits, Vol. 15 No. 3, pp. 273-294. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[32] Osterby, O. and Zlatev, Z. (1983), Direct Methods for Sparse Matrices, Springer-Verlag, New York, NY. · Zbl 0516.65011
[33] Paulino, N.F. , Goes, J. and Steiger-Garcao, A. (2001), ”Design methodology for optimization of analog building blocks using genetic algorithms”, Proceedings of Symposium on Circuits and Systems, Vol. 5, pp. 435-438.
[34] Pontryagin, L.S. , Boltyanskii, V.G. , Gamkrelidze, R.V. and Mishchenko, E.F. (1962), The Mathematical Theory of Optimal Processes, Interscience Publishers Inc., New York, NY.
[35] Pytlak, R. (1999), Numerical Methods for Optimal Control Problems with State Constraints, Springer-Verlag, Berlin. · Zbl 0928.49002
[36] Rabat, N. , Ruehli, A.E. , Mahoney, G.W. and Coleman, J.J. (1985), ”A survey of macromodeling”, IEEE Int. Symp. Circuits Systems, pp. 139-143.
[37] Rizzoli, V. , Costanzo, A. and Cecchetti, C. (1990), ”Numerical optimization of broadband nonlinear microwave circuits”, Proceedings of IEEE MTT-S International Symposium, Vol. 1, pp. 335-338.
[38] Ruehli, A.E. (Ed.), (1987), Circuit Analysis, Simulation and Design, Vol. 3, part 2 Elsevier Science Publishers, Amsterdam. · Zbl 0657.94017
[39] Ruehli, A. , Sangiovanni-Vincentelli, A. and Rabbat, G. (1982), ”Time analysis of large-scale circuits containing one-way macromodels”, IEEE Trans. Circuits Syst., Vol. CAS-29 No. 3, pp. 185-191. · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[40] Sangiovanni-Vincentelli, A. , Chen, L.K. and Chua, L.O. (1977), ”An efficient cluster algorithm for tearing large-scale networks”, IEEE Trans. Circuits Syst., Vol. CAS-24 No. 12, pp. 709-717. · Zbl 0368.94028 · doi:10.1108/COMPEL-10-2013-0324
[41] San Pablo Juárez, M.A. , Zemliak, A. and Ríos Silva, E. (2013), ”Characteristics study of an electronic systems design strategy”, COMPEL: The International Journal for Computation and Mathematics in Electrical and Electronic Engineering, Vol. 32 No. 3, pp. 850-867. , · Zbl 1282.78042 · doi:10.1108/COMPEL-10-2013-0324
[42] Sepulchre, R. , Jankovic, M. and Kokotovic, P.V. (1997), Constructive Nonlinear Control, Springer-Verlag, New York, NY. · Zbl 0876.93082
[43] Shilnikov, A.L. , Chua, L.O. and Turaev, D.V. (2001), Word Scientific Series on Nonlinear Science, Series A, Volume 5: Methods of Qualitative Theory in Dynamics, Part 2, Word Scientific Publishing Company, NJ.
[44] Srivastava, A. , Kachru, T. and Sylvester, D. (2007), ”Low-power-design space exploration considering process variation using robust optimization”, IEEE Transactions on Computer-Aided Design of Integrated Circuits, Vol. 26 No. 1, pp. 67-79. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[45] Stehr, G. , Pronath, M. , Schenkel, F. , Graeb, H. and Antreich, K. (2003), ”Initial sizing of analog integrated circuits by centering within topology-given implicit specifications”, Proceedings of the IEEE/ACM International Conference on Computer-Aided Design, pp. 241-246.
[46] Tadeusiewicz, M. and Kuczynski, A. (2013), ”A very fast method for the dc analysis of diode-transistor circuits”, Circuits Syst. Signal Process., Vol. 32 No. 2, pp. 433-451. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[47] Tlelo-Cuautle, E. , Sanchez-Lopez, C. , Martinez-Romero, E. and Tan, S.X. (2010), ”Symbolic analysis of analog circuits containing voltage mirrors and current mirrors”, Analog Int. Circuits Signal Process., Vol. 65 No. 1, pp. 89-95. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[48] Wu, F.F. (1976), ”Solution of large-scale networks by tearing”, IEEE Trans. Circuits Syst., Vol. CAS-23 No. 12, pp. 706-713. · Zbl 0342.94017 · doi:10.1108/COMPEL-10-2013-0324
[49] Yu, Q. and Sechen, C. (1996), ”A unified approach to the approximate symbolic analysis of large analog integrated circuits”, IEEE Trans. Circuits Systems I, Vol. 43 No. 8, pp. 656-669. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[50] Zaman, M.A. , Gaffar, M. , Alam, M.M. , Mamun, S.A. and Abdul Matin, M. (2011), ”Synthesis of antenna arrays using artificial bee colony optimization algorithm”, International Journal of Microwave and Optical Technology, Vol. 6 No. 8, pp. 234-241.
[51] Zemliak, A. (1999), ”System design strategy by optimum control theory formulation”, 14th European Conf. on Circuit Theory and Design, Stresa, Italy, Aug, Vol. 2, pp. 1371-1374.
[52] Zemliak, A. (2001), ”Analog system design problem formulation by optimum control theory”, IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, Vol. E84-A No. 8, pp. 2029-2041.
[53] Fletcher, R. and Reeves, C.M. (1964), ”Function minimization by conjugate gradients”, Comput. J., Vol. 7, pp. 149-154. , · Zbl 0132.11701 · doi:10.1108/COMPEL-10-2013-0324
[54] Hooke, R. and Jeeves, T.A. (1961), ”Direct search solution of numerical and statistical problems”, JACM, Vol. 8, pp. 212-229. · Zbl 0111.12501 · doi:10.1108/COMPEL-10-2013-0324
[55] Rosen, J.B. (1966), ”Iterative solution of nonlinear optimal control problems”, J. SIAM, Control Series A, pp. 223-244. · Zbl 0229.49025
[56] Ruehli, A.E. and Ditlow, G. (1983), ”Circuit analysis, logic simulation and design verification for VLSI”, Proc. IEEE, Vol. 71 No. 1, pp. 36-68. , · Zbl 1358.94112 · doi:10.1108/COMPEL-10-2013-0324
[57] Slotine, J.E. and Li, W. (1991), Applied Nonlinear Control, Englewood Cliffs, Prentice-Hall, NJ. · Zbl 0753.93036
[58] Tabak, D. and Kuo, B.C. (1969), ”Applications of mathematical programming in the design of optimal control systems”, Int. Journal of Control, Vol. 10 No. 5, pp. 548-552. , · Zbl 0176.39401 · doi:10.1108/COMPEL-10-2013-0324
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.