×

Pointwise frequency responses framework for stability analysis in periodically time-varying systems. (English) Zbl 1358.93144

Summary: This paper explicates a pointwise frequency-domain approach for stability analysis in periodically time-varying continuous systems, by employing Piecewise Linear Time-Invariant (PLTI) models defined via piecewise-constant approximation and their frequency responses. The PLTI models are piecewise LTI state-space expressions, which provide theoretical and numerical conveniences in the frequency-domain analysis and synthesis. More precisely, stability, controllability and positive realness of periodically time-varying continuous systems are examined by means of PLTI models; then their Pointwise Frequency Responses (PFR) are connected to stability analysis. Finally, Nyquist-like and circle-like criteria are claimed in terms of PFR’s for asymptotic stability, finite-gain \(L_p\)-stability and uniformly boundedness, respectively, in linear feedbacks and nonlinear Lur’e connections. The suggested stability conditions have explicit and direct matrix expressions, where neither Floquet factorizations of transition matrices nor open-loop unstable poles are involved, and their implementation can be graphical and numerical. Illustrative studies are sketched to show applications of the main results.

MSC:

93D20 Asymptotic stability in control theory
93B05 Controllability
93C15 Control/observation systems governed by ordinary differential equations
93C05 Linear systems in control theory
Full Text: DOI

References:

[1] DOI: 10.1016/0005-1098(95)00162-X · Zbl 0861.93021 · doi:10.1016/0005-1098(95)00162-X
[2] DOI: 10.1109/9.126576 · Zbl 0757.93020 · doi:10.1109/9.126576
[3] DOI: 10.1515/9781400833344 · doi:10.1515/9781400833344
[4] DOI: 10.1007/978-3-642-58223-3 · doi:10.1007/978-3-642-58223-3
[5] DOI: 10.1016/j.arcontrol.2005.04.001 · doi:10.1016/j.arcontrol.2005.04.001
[6] DOI: 10.1007/978-1-4757-4211-4 · doi:10.1007/978-1-4757-4211-4
[7] DOI: 10.1080/00207721.2012.762563 · Zbl 1317.93183 · doi:10.1080/00207721.2012.762563
[8] Haddad W.M., Nonlinear dynamical systems and control–A lyapunov-based approach (2008) · Zbl 1142.34001
[9] DOI: 10.1016/j.sysconle.2008.03.010 · Zbl 1162.93377 · doi:10.1016/j.sysconle.2008.03.010
[10] Halanay A, Differential equations: Stability, oscillations, time lags (1966) · Zbl 0144.08701
[11] DOI: 10.1016/j.jsv.2011.06.015 · doi:10.1016/j.jsv.2011.06.015
[12] DOI: 10.1109/TMECH.2012.2227062 · doi:10.1109/TMECH.2012.2227062
[13] Jing X.J., Frequeny domian anlaysis nad design of nonlinear systems based on Volterra series expansion: A parametric characteristic approach (2015)
[14] DOI: 10.1007/3-540-36801-9 · doi:10.1007/3-540-36801-9
[15] DOI: 10.1109/TCSI.2002.808218 · Zbl 1368.93118 · doi:10.1109/TCSI.2002.808218
[16] DOI: 10.1016/j.automatica.2007.12.015 · Zbl 1283.93193 · doi:10.1016/j.automatica.2007.12.015
[17] DOI: 10.1109/9.121622 · Zbl 0777.93064 · doi:10.1109/9.121622
[18] Khalil H., Nonlinear systems, 3. ed. (2000)
[19] DOI: 10.1080/00207170500149309 · Zbl 1108.93084 · doi:10.1080/00207170500149309
[20] DOI: 10.3166/ejc.12.559-573 · Zbl 1293.93402 · doi:10.3166/ejc.12.559-573
[21] DOI: 10.1016/j.automatica.2015.08.024 · Zbl 1327.93326 · doi:10.1016/j.automatica.2015.08.024
[22] DOI: 10.1109/JLT.2011.2182038 · doi:10.1109/JLT.2011.2182038
[23] Lukes D.L, Differential equations: Classical to controlled (1982) · Zbl 0509.34003
[24] DOI: 10.1016/j.automatica.2006.08.018 · Zbl 1137.93404 · doi:10.1016/j.automatica.2006.08.018
[25] DOI: 10.1080/00207170410001667477 · Zbl 1061.93050 · doi:10.1080/00207170410001667477
[26] Pettit N.B.O.L, Analysis of piecewise linear dynamical systems (1995) · Zbl 0875.93202
[27] Rosenvasser E.N, Automation and Remote Control, 58 (9) pp 1437– (1997) · Zbl 0928.93038
[28] DOI: 10.1109/TAC.2005.860247 · Zbl 1365.93123 · doi:10.1109/TAC.2005.860247
[29] DOI: 10.1109/TAC.2005.860294 · Zbl 1365.93316 · doi:10.1109/TAC.2005.860294
[30] Stain E.M., Complex analysis (2003)
[31] Yakubovich V.A., Linear differential equations with periodic coefficients (1975) · Zbl 0308.34001
[32] DOI: 10.1109/9.481516 · Zbl 0842.93050 · doi:10.1109/9.481516
[33] DOI: 10.1007/s00034-004-0819-3 · Zbl 1130.94315 · doi:10.1007/s00034-004-0819-3
[34] DOI: 10.1109/81.928155 · Zbl 0998.94049 · doi:10.1109/81.928155
[35] DOI: 10.1016/S0167-6911(97)00078-9 · Zbl 0902.93045 · doi:10.1016/S0167-6911(97)00078-9
[36] DOI: 10.1016/j.automatica.2005.09.001 · Zbl 1121.93048 · doi:10.1016/j.automatica.2005.09.001
[37] DOI: 10.1137/050639934 · Zbl 1229.93022 · doi:10.1137/050639934
[38] DOI: 10.1109/TAC.2008.929394 · Zbl 1367.93264 · doi:10.1109/TAC.2008.929394
[39] DOI: 10.1080/00207170701810709 · Zbl 1158.34328 · doi:10.1080/00207170701810709
[40] DOI: 10.1016/j.jmaa.2008.12.010 · Zbl 1159.93020 · doi:10.1016/j.jmaa.2008.12.010
[41] Zhou K., Essentials of Robust control (1998)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.