×

A closed-form solution of the multi-period portfolio choice problem for a quadratic utility function. (English) Zbl 1358.91088

Summary: In the present paper, we derive a closed-form solution of the multi-period portfolio choice problem for a quadratic utility function with and without a riskless asset. All results are derived under weak conditions on the asset returns. No assumption on the correlation structure between different time points is needed and no assumption on the distribution is imposed. All expressions are presented in terms of the conditional mean vectors and the conditional covariance matrices. If the multivariate process of the asset returns is independent, it is shown that in the case without a riskless asset the solution is presented as a sequence of optimal portfolio weights obtained by solving the single-period Markowitz optimization problem. The process dynamics are included only in the shape parameter of the utility function. If a riskless asset is present, then the multi-period optimal portfolio weights are proportional to the single-period solutions multiplied by time-varying constants which are dependent on the process dynamics. Remarkably, in the case of a portfolio selection with the tangency portfolio the multi-period solution coincides with the sequence of the single-period solutions. Finally, we compare the suggested strategies with existing multi-period portfolio allocation methods on real data.

MSC:

91G10 Portfolio theory

References:

[1] Adcock, C. J. (2009). Asset pricing and portfolio selection based on the multivariate extended skew-Student-t distribution. To appear in Annals of Operation Research. · Zbl 1233.91112
[2] Aït-Sahalia, Y., Cacho-Diaz, J., & Hurd, T. R. (2009). Portfolio choice with jumps: A closed-form solution. The Annals of Applied Probability, 19, 556-584. · Zbl 1170.91364 · doi:10.1214/08-AAP552
[3] Alexander, G. J., & Baptista, M. A. (2004). A comparison of VaR and CVaR constraints on portfolio selection with the mean-variance model. Management Science, 50, 1261-1273. · doi:10.1287/mnsc.1040.0201
[4] Amenguala, D., & Sentana, E. (2010). A comparison of mean-variance efficiency tests. Journal of Econometrics, 154, 16-34. · Zbl 1431.62075 · doi:10.1016/j.jeconom.2009.06.006
[5] Bauwens, L., Laurent, S., & Rombouts, J. V. K. (2006). Multivariate GARCH models: A survey. Journal of Applied Econometrics, 21, 79-109. · doi:10.1002/jae.842
[6] Basak, S., & Chabakauri, G. (2010). Dynamic mean-variance asset allocation. Review of Financial Studies, 23, 2970-3016. · doi:10.1093/rfs/hhq028
[7] Bodnar, O. (2009). Sequential surveillance of the tangency portfolio weights. International Journal of Theoretical and Applied Finance, 12, 797-810. · Zbl 1180.91253 · doi:10.1142/S0219024909005464
[8] Bodnar, T., & Schmid, W. (2008). Estimation of optimal portfolio compositions for Gaussian returns. Statistics & Decisions, 26, 179-201. · Zbl 1159.62327
[9] Bodnar, T., & Schmid, W. (2009). Econometrical analysis of the sample efficient frontier. The European Journal of Finance, 15, 317-335. · doi:10.1080/13518470802423478
[10] Bollerslev, T., Engle, R. F., & Wooldridge, J. (1988). A capital asset pricing model with time varying covariances. Journal of Political Economy, 96, 116-131. · doi:10.1086/261527
[11] Brandt, M. (2010). Portfolio choice problems. In: Aït-Sahalia, Y., & Hansen, L. P. (eds.) Handbook of financial econometrics, forthcoming. · Zbl 1420.91430
[12] Brandt, M. W., Goyal, A., Santa-Clara, P., & Stroud, J. R. (2005). A simulation approach to dynamic portfolio choice with an application to learning about return predictability. Review of Financial Studies, 18, 831-873. · doi:10.1093/rfs/hhi019
[13] Brandt, M., & Santa-Clara, P. (2006). Dynamic portfolio selection by augmenting the asset space. The Journal of Finance, 61, 2187-2217. · doi:10.1111/j.1540-6261.2006.01055.x
[14] Britten-Jones, M. (1999). The sampling error in estimates of mean-variance efficient portfolio weights. Journal of Finance, 54, 655-671. · doi:10.1111/0022-1082.00120
[15] Brockwell, P. J., & Davis, R. A. (1991). Time series: Theory and methods. New York: Springer. · Zbl 0604.62083 · doi:10.1007/978-1-4419-0320-4
[16] Campbell, J. Y., & Viceira, L. M. (2002). Strategic asset allocation: Portfolio choice for long-term investors. New York: Oxford University Press. · doi:10.1093/0198296940.001.0001
[17] Çanakoğlu, E., & Özekici, S. (2009). Portfolio selection in stochastic markets with exponential utility functions. Annals of Operations Research, 166, 281-297. · Zbl 1163.91374 · doi:10.1007/s10479-008-0406-2
[18] Çelikyurt, U., & Özekici, S. (2007). Multiperiod portfolio optimization models in stochastic markets using the mean-variance approach. European Journal of Operational Research, 179, 186-202. · Zbl 1163.91375 · doi:10.1016/j.ejor.2005.02.079
[19] Dantzig, G. B., & Infanger, G. (1993). Multi-stage stochastic linear programs for portfolio optimization. Annals of Operations Research, 45, 59-76. · Zbl 0785.90008 · doi:10.1007/BF02282041
[20] Duffie, D., & Richardson, H. (1991). Mean-variance hedging in continuous time. Annals of Probability, 1, 1-15. · Zbl 0735.90021 · doi:10.1214/aoap/1177005978
[21] Edirisinghe, N. C. P., & Patterson, E. I. (2006). Multi-period stochastic portfolio optimization: Block-separable decomposition. Annals of Operations Research, 152, 367-394. · Zbl 1132.91462 · doi:10.1007/s10479-006-0129-1
[22] Engle, R. F. (1982). Autoregressive conditional heteroscedasticity with estimates of the variance of U.K. inflation. Econometrica, 50, 987-1008. · Zbl 0491.62099 · doi:10.2307/1912773
[23] Engle, R. F. (2002). Dynamic conditional correlation—A simple class of multivariate GARCH models. Journal of Business and Economic Statistics, 20, 339-350. · doi:10.1198/073500102288618487
[24] Frahm, G., & Memmel, C. (2010). Dominating estimators for minimum-variance portfolios. Journal of Econometrics, 159, 289-302. · Zbl 1441.62264 · doi:10.1016/j.jeconom.2010.07.007
[25] Gibbons, M. R., Ross, S. A., & Shanken, J. (1989). A test of the efficiency of a given portfolio. Econometrica, 57, 1121-1152. · Zbl 0679.62097 · doi:10.2307/1913625
[26] Golosnoy, V., & Schmid, W. (2007). EWMA control charts for monitoring optimal portfolio weights. Sequential Analysis, 26, 195-224. · Zbl 1111.62101 · doi:10.1080/07474940701247099
[27] Ingersoll, J. E. (1987). Theory of financial decision making. New York: Rowman & Littlefield Publishers.
[28] Jondeau, E., & Rockinger, M. (2006). Optimal portfolio allocation under higher moments. European Financial Management, 12, 29-55. · doi:10.1111/j.1354-7798.2006.00309.x
[29] Jorion, P. (1986). Bayes-Stein estimation for portfolio analysis. Journal of Financial and Quantitative Analysis, 21, 293-305. · doi:10.2307/2331042
[30] Harvey, C. R., Leichty, J. C., Leichty, M. W., & Muller, P. (2010). Portfolio selection with higher moments. Quantitative Finance, 10, 469-485. · Zbl 1195.91181 · doi:10.1080/14697681003756877
[31] Harville, D. A. (1997). Matrix algebra from a statistician’s perspective. New York: Springer. · Zbl 0881.15001 · doi:10.1007/b98818
[32] Kilianová, S., & Pflug, G Ch. (2009). Optimal pension fund management under multi-period risk minimization. Annals of Operations Research, 166, 261-270. · Zbl 1163.91409 · doi:10.1007/s10479-008-0405-3
[33] Köksalan, M., & Şakar, C. T. (2014). An interactive approach to stochastic programming-based portfolio optimization, To appear in Annals of Operations Research. · Zbl 1349.91246
[34] Konno, H., Pliska, S. R., & Suzuki, K.-I. (1993). Optimal portfolios with asymptotic criteria. Annals of Operations Research, 45, 187-204. · Zbl 0785.90015 · doi:10.1007/BF02282049
[35] Leippold, M., Vanini, P., & Trojani, F. (2004). A geometric approach to multiperiod mean-variance optimization of assets and liabilities. Journal of Economic Dynamics and Control, 28, 1079-1113. · Zbl 1179.91234 · doi:10.1016/S0165-1889(03)00067-8
[36] Li, D., & Ng, W. L. (2000). Optimal dynamic portfolio selection: Multiperiod mean-variance formulation. Mathematical Finance, 10, 387-406. · Zbl 0997.91027 · doi:10.1111/1467-9965.00100
[37] Mansini, R., Ogryczak, W., & Speranza, M. G. (2007). Conditional value at risk and related linear programming models for portfolio optimization. Annals of Operations Research, 152, 227-256. · Zbl 1132.91497 · doi:10.1007/s10479-006-0142-4
[38] Markowitz, H. (1952). Portfolio selection. The Journal of Finance, 7, 77-91.
[39] Markowitz, H. (1959). Portfolio selection: Efficient diversification of investments. New York: Wiley.
[40] Marzban, S., Mahootchi, M., & Khamseh, A. A. (2013). Developing a multi-period robust optimization model considering American style options, To appear in Annals of Operations Research. · Zbl 1325.90099
[41] Merton, R. C., & Samuelson, P. A. (1974). Fallacy of the log-normal approximation to optimal portfolio decision-making over many periods. Journal of Financial Economics, 1, 67-94. · Zbl 1131.91345 · doi:10.1016/0304-405X(74)90009-9
[42] Mossin, J. (1968). Optimal multiperiod portfolio policies. The Journal of Business, 41, 215-229. · doi:10.1086/295078
[43] Mencía, J., & Sentana, E. (2009). Multivariate location-scale mixtures of normals and mean-variance-skewness portfolio allocation. Journal of Econometrics, 153, 105-121. · Zbl 1431.62482 · doi:10.1016/j.jeconom.2009.05.001
[44] Okhrin, Y., & Schmid, W. (2006). Distributional properties of portfolio weights. Journal of Econometrics, 134, 235-256. · Zbl 1420.91430 · doi:10.1016/j.jeconom.2005.06.022
[45] Pennacchi, G. (2008). Theory of asset pricing. Boston: Pearson/Addison-Wesley.
[46] Samuelson, P. A. (1969). Lifetime portfolio selection by dynamic stochastic programming. Review of Economic Studies, 51, 239-246.
[47] Shi, J., Katehakis, M. N., & Melamed, B. (2013). Martingale methods for pricing inventory penalties under continuous replenishment and compound renewal demands. Annals of Operations Research, 208, 593-612. · Zbl 1274.90029 · doi:10.1007/s10479-012-1130-5
[48] Skaf, J., & Boyd, S. (2009). Multi-period portfolio optimization with constraints and transaction costs. Stanford working paper. · Zbl 1367.93218
[49] Steinbach, M. C. (2001). Markowitz revisited: Mean-variance models in financial portfolio analysis. Society for Industrial and Applied Mathematics Review, 43, 31-85. · Zbl 1049.91086
[50] Tobin, J. (1958). Liquidity preference as behavior towards risk. Review of Economic Studies, 25, 65-86. · doi:10.2307/2296205
[51] van Binsbergen, J. H., & Brandt, M. (2007). Solving dynamic portfolio choice problems by recursing on optimized portfolio weights or on the value function? Computational Economics, 29, 355-367. · Zbl 1161.91413 · doi:10.1007/s10614-006-9073-z
[52] Wang, Z. (2005). A shrinkage approach to model uncertainty and asset allocation. Review of Financial Studies, 18, 673-705. · doi:10.1093/rfs/hhi014
[53] Yan, W., & Li, S. (2008). A class of portfolio selection with a four-factor futures price model. Annals of Operations Research, 164, 139-165. · Zbl 1170.91402 · doi:10.1007/s10479-008-0398-y
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.