×

A general non-existence result for linear BSDEs driven by Gaussian processes. (English) Zbl 1358.60054

Summary: In this paper, we study linear backward stochastic differential equations driven by a class of centered Gaussian non-martingales, including fractional Brownian motion with Hurst parameter \(H \in (0,1) \setminus \{ \frac{1}{2} \}\). We show that, for every choice of deterministic coefficient functions, there is a square integrable terminal condition such that the equation has no solution.

MSC:

60G15 Gaussian processes
60H10 Stochastic ordinary differential equations (aspects of stochastic analysis)
60H07 Stochastic calculus of variations and the Malliavin calculus

References:

[1] Bender, C., Explicit solutions of a class of linear fractional BSDEs, Systems Control Lett., 54, 671-680 (2005) · Zbl 1129.60313
[2] Bender, C., The restriction of the fractional Itô integral to adapted integrands is injective, Stoch. Dyn., 5, 37-43 (2005) · Zbl 1067.60024
[3] Bender, C., Backward SDEs driven by Gaussian processes, Stochastic Process. Appl., 124, 2892-2916 (2014) · Zbl 1329.60173
[4] Bender, C.; Elliott, R. J., On the Clark-Ocone theorem for fractional Brownian motion with Hurst parameter bigger than a half, Stoch. Stoch. Rep., 75, 6, 391-405 (2003) · Zbl 1043.60027
[5] Biagini, F.; Hu, Y.; Øksendal, B.; Sulem, A., A stochastic maximum principle for processes driven by fractional Brownian motion, Stochastic Process. Appl., 100, 233-253 (2002) · Zbl 1064.93048
[6] Cheridito, P.; Nualart, D., Stochastic integral of divergence type with respect to the fractional Brownian motion with Hurst parameter \(H < \frac{1}{2} \), Ann. Inst. H. Poincaré Probab. Statist., 41, 1049-1081 (2005) · Zbl 1083.60027
[7] Conway, J. B., A Course in Functional Analysis (1985), Springer · Zbl 0558.46001
[8] Decreusefond, L.; Üstünel, A. S., Stochastic analysis of the fractional Brownian motion, Potential Anal., 10, 177-214 (1999) · Zbl 0924.60034
[9] El Karoui, N.; Huang, S.-J., A general result of existence and uniqueness of backward stochastic differential equations, (El Karoui, N.; Mazliak, L., Backward Stochastic Differential Equations (1997), Longman: Longman Harlow), 27-36 · Zbl 0887.60064
[10] Fei, W.-Y.; Xia, D.-F.; Zhang, S.-G., Solutions to BSDEs driven by both standard and fractional Brownian motions, Acta Math. Appl. Sin. Engl. Ser., 29, 329-354 (2013) · Zbl 1329.60180
[11] Hu, Y.; Øksendal, B., Fractional white noise calculus and applications to finance, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 1-32 (2003) · Zbl 1045.60072
[12] Hu, Y.; Øksendal, B.; Sulem, A., Optimal consumption and portfolio in a Black-Scholes market driven by fractional Brownian motion, Infin. Dimens. Anal. Quantum Probab. Relat. Top., 6, 519-536 (2003) · Zbl 1180.91266
[13] Hu, Y.; Peng, S., Backward stochastic differential equation driven by fractional Brownian motion, SIAM J. Control Optim., 48, 1675-1700 (2009) · Zbl 1284.60117
[14] Janson, S., Gaussian Hilbert Spaces (1997), Cambridge University Press · Zbl 0887.60009
[15] León, J. A.; Nualart, D., An extension of the divergence operator for Gaussian processes, Stochastic Process. Appl., 115, 3, 481-492 (2005) · Zbl 1079.60034
[16] Maticiuc, L.; Nie, T., Fractional backward stochastic differential equations and fractional backward variational inequalities, J. Theoret. Probab., 28, 1, 337-395 (2015) · Zbl 1319.60133
[17] Nualart, D., The Malliavin Calculus and Related Topics (2006), Springer · Zbl 1099.60003
[18] Pipiras, V.; Taqqu, M., Are classes of deterministic integrands for fractional Brownian motion on an interval complete ?, Bernoulli, 7, 6, 873-897 (2001) · Zbl 1003.60055
[19] Samko, S. G.; Kilbas, A. A.; Marichev, O. I., Fractional Integrals and Derivatives, Theory and Applications (1993), Gordon and Breach Science Publishers: Gordon and Breach Science Publishers Yverdon · Zbl 0818.26003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.