×

Curing black hole singularities with local scale invariance. (English) Zbl 1357.83008

Summary: We show that Weyl-invariant dilaton gravity provides a description of black holes without classical space-time singularities. Singularities appear due to the ill behaviour of gauge fixing conditions, one example being the gauge in which theory is classically equivalent to standard General Relativity. The main conclusions of our analysis are as follows: (1) singularities signal a phase transition from broken to unbroken phase of Weyl symmetry; (2) instead of a singularity, there is a “baby universe” or a white hole inside a black hole; (3) in the baby universe scenario, there is a critical mass after which reducing mass makes the black hole larger as viewed by outside observers; (4) if a black hole could be connected with white hole through the “singularity,” this would require breakdown of (classical) geometric description; (5) the singularity of Schwarzschild BH solution is nongeneric and so it is dangerous to rely on it in deriving general results. Our results may have important consequences for resolving issues related to information loss puzzle. Though quantum effects are still crucial and may change the proposed classical picture, a position of building quantum theory around essentially regular classical solutions normally provides a much better starting point.

MSC:

83C57 Black holes
83C75 Space-time singularities, cosmic censorship, etc.
53Z05 Applications of differential geometry to physics
81T20 Quantum field theory on curved space or space-time backgrounds
83F05 Relativistic cosmology
83D05 Relativistic gravitational theories other than Einstein’s, including asymmetric field theories

References:

[1] Bars, I.; Steinhardt, P.; Turok, N., Local conformal symmetry in physics and cosmology, Physical Review D, 89, 4 (2014) · Zbl 1338.81312 · doi:10.1103/physrevd.89.043515
[2] Dirac, P. A. M., Long range forces and broken symmetries, Proceedings of the Royal Society of London A, 333, 403 (1973) · doi:10.1098/rspa.1973.0070
[3] Kallosh, R.; Linde, A., Universality class in conformal inflation, Journal of Cosmology and Astroparticle Physics, 1307, 002 (2013) · doi:10.1088/1475-7516/2013/07/002
[4] ’t Hooft, G., Probing the small distance structure of canonical quantum gravity using the conformal group
[5] ’t Hooft, G., A class of elementary particle models without any adjustable real parameters, Foundations of Physics, 41, 12, 1829-1856 (2011) · Zbl 1245.81304 · doi:10.1007/s10701-011-9586-8
[6] Bars, I.; Chen, S.-H.; Turok, N., Geodesically complete analytic solutions for a cyclic universe, Physical Review D, 84, 8 (2011) · doi:10.1103/physrevd.84.083513
[7] Bars, I.; Chen, S.-H.; Steinhardt, P. J.; Turok, N., Antigravity and the big crunch/big bang transition, Physics Letters B, 715, 1-3, 278-281 (2012) · doi:10.1016/j.physletb.2012.07.071
[8] Bars, I.; Chen, S.-H.; Steinhardt, P. J.; Turok, N., Complete set of homogeneous isotropic analytic solutions in scalar-tensor cosmology with radiation and curvature, Physical Review D, 86, 8 (2012) · doi:10.1103/physrevd.86.083542
[9] Bocharova, N.; Bronnikov, K.; Melnikov, V., An exact solution of the system of Einstein equations and mass-free scalar field, Vestnik Moskovskogo Universiteta, Seriya 3: Fizika, Astronomiya, 25, 6, 80 (1970)
[10] Dominis Prester, P., Field redefinitions, Weyl invariance and the nature of mavericks, Classical and Quantum Gravity, 31, 15 (2014) · Zbl 1296.83044 · doi:10.1088/0264-9381/31/15/155006
[11] Bekenstein, J. D., Exact solutions of Einstein-conformal scalar equations, Annals of Physics, 82, 535-547 (1974) · doi:10.1016/0003-4916(74)90124-9
[12] Martinez, C.; Troncoso, R.; Zanelli, J., De Sitter black hole with a conformally coupled scalar field in four dimensions, Physical Review D, 67, 2 (2003) · doi:10.1103/physrevd.67.024008
[13] Cebeci, H.; Dereli, T., Conformal black hole solutions of axi dilaton gravity in D-dimensions, Physical Review D, 65 (2002) · doi:10.1103/PhysRevD.65.047501
[14] Zloshchastiev, K. G., On co-existence of black holes and scalar field, Physical Review Letters, 94 (2005) · doi:10.1103/PhysRevLett.94.121101
[15] Bekenstein, J. D., Black holes with scalar charge, Annals of Physics, 91, 1, 75-82 (1975) · doi:10.1016/0003-4916(75)90279-1
[16] Giddings, S. B.; Marolf, D.; Hartle, J. B., Observables in effective gravity, Physical Review D, 74, 6 (2006) · doi:10.1103/physrevd.74.064018
[17] Chan, K. C. K.; Creighton, J. D. E.; Mann, R. B., Conserved masses in GHS Einstein and string black holes and consistent thermodynamics, Physical Review D, 54, 6, 3892-3899 (1996) · doi:10.1103/physrevd.54.3892
[18] Horowitz, G. T., The dark side of string theory: black holes and black strings
[19] Youm, D., Black holes and solitons in string theory, Physics Reports, 316, 1-3, 1-232 (1999) · doi:10.1016/s0370-1573(99)00037-x
[20] Lavrelashvili, G. V., NonAbelian surprises in gravity
[21] Gibbons, G. W., Antigravitating black hole solitons with scalar hair in \(N = 4\) supergravity, Nuclear Physics B, 207, 2, 337-349 (1982) · doi:10.1016/0550-3213(82)90170-5
[22] Doroshkevich, A. G.; Novikov, I. D., Space-time and physical fields in black holes, Journal of Experimental and Theoretical Physics, 74, 3 (1978)
[23] Chadburn, S.; Gregory, R., Time dependent black holes and scalar hair, Classical and Quantum Gravity, 31, 19 (2014) · Zbl 1304.83030 · doi:10.1088/0264-9381/31/19/195006
[24] Belinskii, V. A.; Khalatnikov, I. M., Effect of scalar and vector fields on the nature of the cosmological singularity, Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 63, 1121 (1972)
[25] Burko, L. M., Homogeneous spacelike singularities inside spherical black holes · Zbl 0907.53071
[26] Hsu, S. D. H., Spacetime topology change and black hole information, Physics Letters B, 644, 1, 67-71 (2007) · Zbl 1248.83062 · doi:10.1016/j.physletb.2006.11.016
[27] Hossenfelder, S.; Smolin, L., Conservative solutions to the black hole information problem, Physical Review D, 81, 6 (2010) · doi:10.1103/physrevd.81.064009
[28] Percacci, R., Renormalization group flow of Weyl invariant dilaton gravity, New Journal of Physics, 13 (2011) · Zbl 1448.83044 · doi:10.1088/1367-2630/13/12/125013
[29] Codello, A.; D’Odorico, G.; Pagani, C.; Percacci, R., The renormalization group and Weyl invariance, Classical and Quantum Gravity, 30, 11 (2013) · Zbl 1271.83036 · doi:10.1088/0264-9381/30/11/115015
[30] Kanti, P.; Rizos, J.; Tamvakis, K., Singularity-free cosmological solutions in quadratic gravity, Physical Review D, 59, 8 (1999) · doi:10.1103/physrevd.59.083512
[31] Modesto, L., Super-renormalizable Quantum Gravity, Physical Review D, 86, 4 (2012) · doi:10.1103/physrevd.86.044005
[32] Biswas, T.; Gerwick, E.; Koivisto, T.; Mazumdar, A., Towards singularity- and ghost-free theories of gravity, Physical Review Letters, 108, 3 (2012) · doi:10.1103/physrevlett.108.031101
[33] Anabalon, A.; Astefanesei, D.; Mann, R., Exact asymptotically flat charged hairy black holes with a dilaton potential, Journal of High Energy Physics, 2013, 184 (2013) · doi:10.1007/JHEP10(2013)184
[34] Anabalon, A., Exact Hairy Black Holes · Zbl 1327.83059
[35] Carrasco, J. J. M.; Chemissany, W.; Kallosh, R., Journeys through antigravity?, Journal of High Energy Physics, 2014, 1, article 130 (2014) · Zbl 1333.83264
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.