×

Recent advances in percolation theory and its applications. (English) Zbl 1357.82032

Summary: Percolation is the simplest fundamental model in statistical mechanics that exhibits phase transitions signaled by the emergence of a giant connected component. Despite its very simple rules, percolation theory has successfully been applied to describe a large variety of natural, technological and social systems. Percolation models serve as important universality classes in critical phenomena characterized by a set of critical exponents which correspond to a rich fractal and scaling structure of their geometric features. We will first outline the basic features of the ordinary model.{ }Over the years a variety of percolation models has been introduced some of which with completely different scaling and universal properties from the original model with either continuous or discontinuous transitions depending on the control parameter, dimensionality and the type of the underlying rules and networks. We will try to take a glimpse at a number of selective variations including Achlioptas process, half-restricted process and spanning cluster-avoiding process as examples of the so-called explosive percolation. We will also introduce non-self-averaging percolation and discuss correlated percolation and bootstrap percolation with special emphasis on their recent progress. Directed percolation process will be also discussed as a prototype of systems displaying a nonequilibrium phase transition into an absorbing state.{ }In the past decade, after the invention of stochastic Löwner evolution (SLE) by Oded Schramm, two-dimensional (2D) percolation has become a central problem in probability theory leading to the two recent Fields medals. After a short review on SLE, we will provide an overview on existence of the scaling limit and conformal invariance of the critical percolation. We will also establish a connection with the magnetic models based on the percolation properties of the Fortuin-Kasteleyn and geometric spin clusters. As an application we will discuss how percolation theory leads to the reduction of the 3D criticality in a 3D Ising model to a 2D critical behavior.{ }Another recent application is to apply percolation theory to study the properties of natural and artificial landscapes. We will review the statistical properties of the coastlines and watersheds and their relations with percolation. Their fractal structure and compatibility with the theory of SLE will also be discussed. The present mean sea level on Earth will be shown to coincide with the critical threshold in a percolation description of the global topography.

MSC:

82B43 Percolation
60K35 Interacting random processes; statistical mechanics type models; percolation theory
60J67 Stochastic (Schramm-)Loewner evolution (SLE)

References:

[1] Flory, Paul J., Molecular size distribution in three dimensional polymers. I. Gelation1, J. Am. Chem. Soc., 63, 11, 3083-3090 (1941)
[2] Flory, Paul J., Molecular size distribution in three dimensional polymers. II. Trifunctional branching units, J. Am. Chem. Soc., 63, 11, 3091-3096 (1941)
[3] Flory, Paul J., Molecular size distribution in three dimensional polymers. III. Tetrafunctional branching units, J. Am. Chem. Soc., 63, 11, 3096-3100 (1941)
[4] Cahn, R. W., Percolation frustrated, Nature, 389, 121-122 (1997)
[5] Broadbent, S. R.; Hammersley, J. M., Percolation processes, Math. Proc. Camb. Phil. Soc., 53, 03, 629-641 (1957) · Zbl 0091.13901
[6] Essam, J. W.; Fisher, M. E., Some cluster size and percolation problems, J. Math. Phys., 2, 609 (1961) · Zbl 0105.43601
[7] Fisher, M. E., Statistical mechanics of dimers on a plane lattice, Phys. Rev., 124, 6, 1664 (1961) · Zbl 0105.22403
[8] Kirkpatrick, S., Percolation and conduction, Rev. Modern Phys., 45, 4, 574 (1973)
[9] Stauffer, D., Scaling theory of percolation clusters, Phys. Rep., 54, 1, 1-74 (1979)
[10] Essam, J. W., Percolation theory, Rep. Progr. Phys., 43, 7, 833 (1980)
[11] Isichenko, M. B., Percolation, statistical topography, and transport in random media, Rev. Modern Phys., 64, 961 (1992)
[12] Sahimi, M., Flow phenomena in rocks: from continuum models to fractals, percolation, cellular automata, and simulated annealing, Rev. Modern Phys., 65, 1393 (1993)
[13] Stauffer, D.; Aharony, A., Introduction to Percolation Theory (1994), Taylor and Francis: Taylor and Francis London
[14] Sahimi, M., Applications of Percolation Theory (1994), Taylor and Francis: Taylor and Francis London
[15] Bunde, A.; Havlin, S., Fractals and Disordered Systems (1996), Springer Verlag: Springer Verlag Heidelberg · Zbl 0947.58001
[16] King, P. R.; Buldyrev, S. V.; Dokholyan, N. V.; Havlin, S.; Lopez, E.; Paul, G.; Stanley, H. E., Percolation theory, (London Petrophysical Society Newsletter (2002)) · Zbl 1001.86020
[17] Stauffer, D., Classical percolation, quantum and semi-classical percolation and breakdown in disordered solids, Lect. Notes Phys., 762, 1-19 (2009) · Zbl 1181.82038
[18] Vigolo, B.; Coulon, C.; Maugey, M.; Zakri, C.; Poulin, P., An experimental approach to the percolation of sticky nanotubes, Science, 309, 920-923 (2005)
[19] Grimaldi, C.; Balberg, I., Tunneling and nonuniversality in continuum percolation systems, Phys. Rev. Lett., 96, 066602 (2006)
[20] Sapoval, B.; Baldassarri, A.; Gabrielli, A., Self-stabilized fractality of seacoasts through damped erosion, Phys. Rev. Lett., 93, 098501 (2004)
[21] Saberi, A. A., Percolation description of the global topography of Earth and Moon, Phys. Rev. Lett., 110, 178501 (2013)
[22] Derenyi, I.; Palla, G.; Vicsek, T., Clique percolation in random networks, Phys. Rev. Lett., 94, 160202 (2005)
[23] Callaway, D. S.; Newman, M. E.J.; Strogatz, S. H.; Watts, D. J., Network robustness and fragility: Percolation on random graphs, Phys. Rev. Lett., 85, 5468 (2000)
[24] Kalisky, T.; Cohen, R., Width of percolation transition in complex networks, Phys. Rev. E, 73, 035101 (2006)
[25] Cardy, J. L., Turbulence: The power of two dimensions, Nat. Phys., 2, 67-68 (2006)
[26] Bernard, D.; Boffetta, G.; Celani, A.; Falkovich, G., Conformal invariance in two-dimensional turbulence, Nat. Phys., 2, 124-128 (2006)
[27] Kasteleyn, P. W.; Fortuin, C. M., J. Phys. Soc. Japan, 26, 11 (1969), Suppl.
[28] Fortuin, C. M.; Kasteleyn, P. W., On the random-cluster model: I. Introduction and relation to other models, Physica, 57, 536-564 (1972)
[29] Dotsenko, V. S.; Piccoa, M.; Windeya, P.; Harris, G.; Martinec, E.; Marinari, E., Self-avoiding surfaces in the 3d Ising model, Nuclear Phys. B, 448, 577-620 (1995) · Zbl 1009.82502
[30] Dotsenko, V. S.; Windey, P.; Harris, G.; Marinari, E.; Martinec, E.; Picco, Marco, Critical and topological properties of cluster boundaries in the 3D Ising model, Phys. Rev. Lett., 71, 811 (1993)
[31] Saberi, A. A.; Dashti-Naserabadi, H., Three-dimensional Ising model, percolation theory and conformal invariance, Eur. Phys. Lett., 92, 67005 (2010)
[32] Anekal, S. G.; Bahukudumbi, P.; Bevan, M. A., Dynamic signature for the equilibrium percolation threshold of attractive colloidal fluids, Phys. Rev. E, 73, 020403 (2006)
[33] Gnan, N.; Zaccarelli, E.; Sciortino, F., Casimir-like forces at the percolation transition, Nature Commun., 5, 3267 (2014)
[34] Saberi, A. A., Geometrical phase transition on \(WO_3\) surface, Appl. Phys. Lett., 97, 154102 (2010)
[35] Knecht, C. L.; Trump, W.; ben-Avraham, D.; Ziff, R. M., Retention capacity of random surfaces, Phys. Rev. Lett., 108, 045703 (2012)
[36] Baek, S. K.; Kim, B. J., Critical condition of the water-retention model, Phys. Rev. E, 85, 032103 (2012)
[37] Schrenk, K. J.; Araújo, N. A.M.; Ziff, R. M.; Herrmann, H. J., Retention capacity of correlated surfaces, Phys. Rev. E, 89, 062141 (2014)
[38] Gruzberg, I. A.; Ludwig, A. W.W.; Read, N., Exact exponents for the spin quantum Hall transition, Phys. Rev. Lett., 82, 4524-4527 (1999)
[39] Endrődi, G.; Gattringer, C.; Schadler, H.-P., Fractality and other properties of center domains at finite temperature: SU(3) lattice gauge theory, Phys. Rev. D, 89, 054509 (2014)
[40] Araújo, N. A.M.; Grassberger, P.; Kahng, B.; Schrenk, K. J.; Ziff, R. M., Recent advances and open challenges in percolation, Eur. Phys. J. Spec. Top., 223, 2307-2321 (2014)
[41] Kesten, H., The critical probability of bond percolation on the square lattice equals 1/2, Commun. Math. Phys., 74, 41-59 (1980) · Zbl 0441.60010
[42] Wierman, John C., A bond percolation critical probability determination based on the star-triangle transformation, J. Phys. A: Math. Gen., 17, 1525 (1984)
[43] Grimmett, G. R., Percolation, Grundlehren der mathematischen Wissenschaften, vol. 321 (1999), Springer · Zbl 0926.60004
[44] Sykes, M. F.; Essam, J. W., Some exact critical percolation probabilities for bond and site problems in two dimensions, Phys. Rev. Lett., 10, 3 (1963)
[45] Ziff, R. M.; Scullard, C. R., Exact bond percolation thresholds in two dimensions, J. Phys. A, 39, 15083 (2006) · Zbl 1146.82306
[46] Grimmett, G. R.; Manolescu, I., Probab. Theory Related Fields (2013), 0.1007/s00440-013-0507-y, publ. online
[47] Ziff, R. M.; Scullard, C. R.; Wierman, J. C.; Sedlock, M. R.A., The critical manifolds of inhomogeneous bond percolation on bow-tie and checkerboard lattices, J. Phys. A, 45, 494005 (2012) · Zbl 1257.82055
[48] Wu, F. Y., Critical point of planar Potts models, J. Phys. C: Solid State Phys., 12, 17, L645 (1979)
[49] Aizenman, M., On the number of incipient spanning clusters, Nuclear Phys. B, 485, 551-582 (1997) · Zbl 0925.82112
[50] Reynolds, P. J.; Stanley, H. E.; Klein, W., Large-cell Monte Carlo renormalization group for percolation, Phys. Rev. B, 21, 3, 1223 (1980)
[51] Ziff, R. M.; Newman, M. E.J., Convergence of threshold estimates for two-dimensional percolation, Phys. Rev. E, 66, 016129 (2000)
[52] Hara, T.; Slade, G., Mean-field behaviour and the lace expansion, (Probability and Phase Transition (1994), Springer: Springer Netherlands), 87-122 · Zbl 0831.60107
[53] Beffara, V.; Sidoravicius, V., Percolation Theory · Zbl 1127.82047
[54] Chalupa, J.; Leath, P. L.; Reich, G. R., Bootstrap percolation on a Bethe lattice, J. Phys. C, 12, L31 (1979)
[55] Adler, J., Bootstrap percolation, Physica A, 171, 453 (1991)
[56] Bollobás, B., Graph Theory and Combinatorics in: Proc. Cambridge Combinatorial Conference in Honour of Paul Erdős, 35 (1984), Academic Press: Academic Press New York
[57] Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., \(K\)-core organization of complex networks, Phys. Rev. Lett., 96, 040601 (2006) · Zbl 1130.94024
[58] Achlioptas, D.; D’Souza, R. M.; Spencer, J., Explosive percolation in random networks, Science, 323, 1453 (2009) · Zbl 1226.05221
[59] Araújo, N. A.M.; Herrmann, H. J., Explosive percolation via control of the largest cluster, Phys. Rev. Lett., 105, 035701 (2010)
[60] Ziff, R. M., Explosive growth in biased dynamic percolation on two-dimensional regular lattice networks, Phys. Rev. Lett., 103, 045701 (2009)
[61] Cho, Y. S.; Kim, J. S.; Park, J.; Kahng, B.; Kim, D., Percolation transitions in scale-free networks under the Achlioptas process, Phys. Rev. Lett., 103, 135702 (2009)
[62] Friedman, E. J.; Landsberg, A. S., Construction and analysis of random networks with explosive percolation, Phys. Rev. Lett., 103, 255701 (2009)
[63] D’Souza, R. M.; Mitzenmacher, M., Local cluster aggregation models of explosive percolation, Phys. Rev. Lett., 104, 195702 (2010)
[64] Nagler, J.; Levina, A.; Timme, M., Impact of single links in competitive percolation, Nat. Phys., 7, 265 (2011)
[65] Ziff, R. M., Getting the jump on explosive percolation, Science, 339, 1159 (2013)
[66] Cho, Y. S.; Kahng, B., Origin of Discontinuous Percolation Transition in Cluster Merging Process · Zbl 1514.82177
[67] Grassberger, P.; Christensen, C.; Bizhani, G.; Son, S. W.; Paczuski, M., Explosive percolation is continuous, but with unusual finite size behavior, Phys. Rev. Lett., 106, 225701 (2011)
[68] Schrenk, K. J.; Araújo, N. A.M.; Herrmann, H. J., Gaussian model of explosive percolation in three and higher dimensions, Phys. Rev. E, 84, 041136 (2011)
[69] Moreira, A. A.; Oliveira, E. A.; Reis, S. D.S.; Herrmann, H. J.; Andrade, J. S., Hamiltonian approach for explosive percolation, Phys. Rev. E, 81, 040101(R) (2010)
[70] Andrade, J. S.; Herrmann, H. J.; Moreira, A. A.; Oliveira, C. L.N., Transport on exploding percolation clusters, Phys. Rev. E, 83, 031133 (2011)
[71] Reis, S. D.S.; Moreira, A. A.; Andrade, J. S., Nonlocal product rules for percolation, Phys. Rev. E, 85, 041112 (2012)
[72] Riordan, O.; Warnke, L., Explosive percolation is continuous, Science, 333, 322 (2011)
[73] Ziff, R. M., Scaling behavior of explosive percolation on the square lattice, Phys. Rev. E, 82, 051105 (2010)
[74] Cardy, J. L., Scaling and Renormalization in Statistical Physics (1996), Cambridge University Press: Cambridge University Press Cambridge
[75] Cardy, J. L., Scaling and Renormalization in Statistical Physics, 238 (1996), Univ. Pr: Univ. Pr Cambridge, UK · Zbl 0914.60002
[76] Polchinski, J., Scale and conformal invariance in quantum field theory, Nuclear Phys. B, 303, 226 (1988)
[77] Langlands, R. P.; Pichet, C.; Pouliot, Ph.; Saint-Aubin, Y., On the universality of crossing probabilities in two-dimensional percolation, J. Stat. Phys., 67, 553-574 (1992) · Zbl 0925.82109
[78] Langlands, R.; Pouliot, P.; Saint-Aubin, Y., Conformal invariance in two-dimensional percolation, Bull. Amer. Math. Soc. (N.S.), 30, 1-61 (1994) · Zbl 0794.60109
[79] Cardy, J. L., Critical percolation in finite geometries, J. Phys. A, 25, 201-206 (1992) · Zbl 0965.82501
[80] Smirnov, S., Critical percolation in the plane: Conformal invariance, Cardy’s formula, C. R. Acad. Sci., Paris I, 333, 3, 239-244 (2001) · Zbl 0985.60090
[81] Flores, S. M., Correlation functions in two-dimensional critical systems with conformal symmetry (2012), University of Michigan, (Ph.D. thesis)
[82] Schramm, O., Scaling limits of loop-erased random walks and uniform spanning trees, Israel. J. Math., 118, 221-288 (2000) · Zbl 0968.60093
[83] Cardy, J., SLE for theoretical physicists, Ann. Phys. (N.Y.), 318, 81-118 (2005) · Zbl 1073.81068
[84] Bauer, M.; Bernard, D., SLE and Loewner chains, Phys. Rep., 432, 115-221 (2006)
[85] Chelkak, D.; Duminil-Copin, H.; Hongler, C.; Kemppainen, A.; Smirnov, S., Convergence of Ising interfaces to Schramm’s SLE curves, C. R. Math., 352, 2, 157-161 (2014) · Zbl 1294.82007
[86] Bernard, D.; Boffetta, G.; Celani, A.; Falkovich, G., Inverse turbulent cascades and conformally invariant curves, Phys. Rev. Lett., 98, 024501 (2007)
[87] Amoruso, C.; Hartmann, A. K.; Hastings, M. B.; Moore, M. A., Conformal invariance and stochastic Loewner evolution processes in two-dimensional Ising spin glasses, Phys. Rev. Lett., 97, 267202 (2006)
[88] Bernard, D.; Le Doussal, P.; Middleton, A. A., Possible description of domain walls in two-dimensional spin glasses by stochastic Loewner evolutions, Phys. Rev. B, 76, 020403(R) (2007)
[89] Davatolhagh, S.; Moshfeghian, M.; Saberi, A. A., Critical behavior of the geometrical spin clusters and interfaces in the two-dimensional thermalized bond Ising model, J. Stat. Mech., P02015 (2012) · Zbl 1456.82392
[90] Keating, J. P.; Marklof, J.; Williams, I. G., Nodal domain statistics for quantum maps, percolation, and stochastic Loewner evolution, Phys. Rev. Lett., 97, 034101 (2006)
[91] Bogomolny, E.; Dubertrand, R.; Schmit, C., SLE description of the nodal lines of random wave functions, J. Phys. A: Math. Theor., 40, 381-395 (2007) · Zbl 1105.81038
[92] Saberi, A. A.; Rajabpour, M. A.; Rouhani, S., Conformal curves on \(WO_3\) Surface, Phys. Rev. Lett., 100, 044504 (2008)
[93] Saberi, A. A.; Niry, M. D.; Fazeli, S. M.; Tabar, M. R.R.; Rouhani, S., Conformal invariance of isoheight lines in a two-dimensional Kardar-Parisi-Zhang surface, Phys. Rev. E, 77, 051607 (2008)
[94] Abraham, D. B.; Newman, C. M., Equilibrium Stranski-Krastanow and Volmer-Weber models, Europhys. Lett., 86, 16002 (2009)
[95] Saberi, A. A.; Rouhani, S., Scaling of clusters and winding angle statistics of iso-height lines in two-dimensional KPZ surface, Phys. Rev. E, 79, 036102 (2009)
[96] Moriconi, L.; Moriconi, M., Conformal invariance in (2+1)-dimensional stochastic systems, Phys. Rev. E, 81, 041105 (2010)
[97] Saberi, A. A.; Dashti-Naserabadi, H.; Rouhani, S., Classification of (2+1)-dimensional growing surfaces using Schramm-Loewner evolution, Phys. Rev. E, 82, 020101(R) (2010)
[98] Saberi, A. A.; Moghimi-Araghi, S.; Dashti-Naserabadi, H.; Rouhani, S., Direct evidence for conformal invariance of avalanche frontiers in sandpile models, Phys. Rev. E, 79, 031121 (2009)
[99] Daryaei, E.; Araújo, N. A.M.; Schrenk, K. J.; Rouhani, S.; Herrmann, H. J., Watersheds are Schramm-Loewner evolution curves, Phys. Rev. Lett., 109, 218701 (2012)
[100] Posé, N.; Schrenk, K. J.; Araújo, N. A.M.; Herrmann, H. J., Shortest path and Schramm-Loewner evolution, Sci. Rep., 4, 5495 (2014)
[101] Abbas Ahmed, J.; Santra, S. B., Critical properties of island perimeters in the flooding transition of stochastic and rotational sandpile models, Physica A, 391, 5332 (2012)
[102] Boffetta, G.; Celani, A.; Dezzani, D.; Seminara, A., How winding is the coast of Britain? Conformal invariance of rocky shorelines, Geophys. Res. Lett., 35, L03615 (2008)
[103] Fortuin, C. M., On the random-cluster model II. The percolation model, Physica (Utrecht), 58, 393-418 (1972)
[104] Fortuin, C. M., On the random-cluster model: III. The simple random-cluster model, Physica (Utrecht), 59, 545-570 (1972)
[105] Swendsen, R. H.; Wang, J.-S., Nonuniversal critical dynamics in Monte Carlo simulations, Phys. Rev. Lett., 58, 86 (1987)
[106] Wolff, U., Collective Monte Carlo updating for spin systems, Phys. Rev. Lett., 62, 361 (1989)
[107] Onsager, L., Crystal statistics. I. A two-dimensional model with an order-disorder transition, Phys. Rev., 65, 117 (1944) · Zbl 0060.46001
[108] Istrail, S., Statistical mechanics, three-dimensionality and NP-Completeness: I. Universality of intractability of the partition functions of the Ising model across non-planar lattices, (32nd ACM Symposium on the Theory of Computing, STOC00 (2000), ACM Press: ACM Press Portland, Oregon), 87-96 · Zbl 1296.82012
[109] Distler, J., A note on the three-dimensional Ising model as a string theory, Nuclear Phys. B, 388, 648-670 (1992)
[110] Dotsenko, V. S., 3D Ising model as a free fermion string theory: An approach to the thermal critical index calculation, Nuclear Phys. B, 285, 45-69 (1987)
[111] Sedrakyan, A., 3D Ising model as a string theory in three-dimensional euclidean space, Phys. Lett. B, 304, 256-262 (1993)
[112] Ambjørn, J.; Sedrakyan, A.; Thorleifsson, G., The 3D Ising model represented as random surfaces, Phys. Lett. B, 303, 327-333 (1993)
[113] Vorosmarty, C. J.; Federer, C. A.; Schloss, A. L., Evaporation functions compared on US watersheds: possible implications for global-scale water balance and terrestrial ecosystem modeling, J. Hydrol., 207, 147 (1998)
[114] Lee, K. T.; Lin, Y. T., Flow analysis of landslide dammed lake watersheds: a case study, J. Am. Water Resour. Assoc., 42, 1615 (2006)
[115] Fehr, E.; Andrade, J. S.; da Cunha, S. D.; da Silva, L. R.; Herrmann, H. J.; Kadau, D.; Moukarzel, C. F.; Oliveira, E. A., New efficient methods for calculating watersheds, J. Stat. Mech., P09007 (2009)
[116] Fehr, E.; Schrenk, K. J.; Araújo, N. A.M.; Kadau, D.; Grassberger, P.; Andrade, J. S.; Herrmann, H. J., Corrections to scaling for watersheds, optimal path cracks, and bridge lines, Phys. Rev. E, 86, 011117 (2012)
[117] Schrenk, K. J.; Araújo, N. A.M.; Herrmann, H. J., How to share underground reservoirs, Sci. Rep., 2, 751 (2012)
[118] Knecht, C. L.; Trump, W.; ben-Avraham, D.; Ziff, R. M., Retention capacity of random surfaces, Phys. Rev. Lett., 108, 045703 (2012)
[119] Schmittbuhl, J.; Vilotte, J.-P.; Roux, S., Percolation through self-affine surfaces, J. Phys. A, 26, 6115 (1993)
[120] Sahimi, M., Non-linear and non-local transport processes in heterogeneous media: from long-range correlated percolation to fracture and materials breakdown, Phys. Rep., 306, 213-395 (1998)
[121] Sahimi, M., Long-range correlated percolation and flow and transport in heterogeneous porous media, J. Phys. I, 4, 1263-1268 (1994)
[122] Sahimi, M., Effect of long-range correlations on transport phenomena in disordered media, AIChE J., 41, 229-240 (1995)
[123] Sahimi, M.; Mukhopadhyay, S., Scaling properties of a percolation model with long-range correlations, Phys. Rev. E, 54, 3870 (1996)
[124] Knackstedt, M. A.; Sahimi, M.; Sheppard, A. P., Invasion percolation with long-range correlations: First-order phase transition and nonuniversal scaling properties, Phys. Rev. E, 61, 4920 (2000)
[125] Sandler, N.; Maei, H. R.; Kondev, J., Correlated quantum percolation in the lowest Landau level, Phys. Rev. B, 70, 045309 (2004)
[126] Schrenk, K. J.; Posé, N.; Kranz, J. J.; van Kessenich, L. V.M.; Araújo, N. A.M.; Herrmann, H. J., Percolation with long-range correlated disorder, Phys. Rev. E, 88, 052102 (2013)
[127] Weinrib, A.; Halperin, B. I., Critical phenomena in systems with long-range-correlated quenched disorder, Phys. Rev. B, 27, 413 (1983)
[128] Janke, W.; Weigel, M., Harris-Luck criterion for random lattices, Phys. Rev. B, 69, 144208 (2004)
[129] Fehr, E.; Kadau, D.; Andrade, J. S.; Herrmann, H. J., Impact of perturbations on watersheds, Phys. Rev. Lett., 106, 048501 (2011)
[130] Kalda, J., Statistical topography of rough surfaces, Europhys. Lett., 84, 46003 (2008)
[131] Kondev, J.; Henley, C. L., Geometrical exponents of contour loops on random Gaussian surfaces, Phys. Rev. Lett., 74, 4580 (1995)
[132] Kondev, J.; Henley, C. L.; Salinas, D. G., Nonlinear measures for characterizing rough surface morphologies, Phys. Rev. E, 61, 104 (2000)
[133] Schwartz, M., End-to-end distance on contour loops of random Gaussian surfaces, Phys. Rev. Lett., 86, 1283 (2001)
[134] Mandre, I.; Kalda, J., Monte-Carlo study of scaling exponents of rough surfaces and correlated percolation, Eur. Phys. J. B, 83, 107 (2011)
[135] Duplantier, B., Conformally invariant fractals and potential theory, Phys. Rev. Lett., 84, 1363 (2000) · Zbl 1042.82577
[136] Schrenk, K. J., Discontinuous percolation transitions and lattice models of fractal boundaries and paths (2014), ETH Zurich, (Ph.D. thesis)
[137] Grimmett, G. R., Percolation (1999), Cambridge University Press: Cambridge University Press Cambridge · Zbl 0926.60004
[138] Djordjevic, Z. V.; Stanley, H. E., Scaling properties of the perimeter distribution for lattice animals, percolation and compact clusters, J. Phys. A: Math. and Gen., 20, 9, L587 (1987)
[139] Steif, J. E., A Mini Course on Percolation Theory (2009), Göteborg University
[140] Benjamini, I.; Schramm, O., Percolation beyond \(Z^d\), many questions and a few answers, Electron. Commun. Probab., 1, 71-82 (1996) · Zbl 0890.60091
[141] Newman, C. M.; Schulman, L. S., Number and density of percolating clusters, J. Phys. A: Math. Gen., 14, 1735-1743 (1981)
[142] Aizenman, M.; Kesten, H.; Newman, C. M., Uniqueness of the infinite cluster and continuity of connectivity functions for short and long range percolation, Commun. Math. Phys., 111, 505-531 (1987) · Zbl 0642.60102
[143] Burton, R.; Keane, M., Density and uniqueness in percolation, Commun. Math. Phys., 121, 501-505 (1989) · Zbl 0662.60113
[144] van der Hofstad, R., Percolation and random graphs, New Perspect. Stoch. Geom., 173-247 (2010) · Zbl 1193.82017
[145] Grimmett, G. R.; Newman, C. M., Percolation in \(\infty + 1\) dimensions, Disorder Phys. Syst., 167-190 (1990) · Zbl 0721.60121
[146] Bethe, H. A., Statistical theory of superlattices, Proc. R. Soc. Lond. Ser. A Math. Phys. Sci., 150, 871, 552-575 (1935) · Zbl 0012.04501
[147] Baxter, R. J., Exactly Solvable Models in Statistical Mechanics (1982), Academic Press: Academic Press New York · Zbl 0538.60093
[148] Thorpe, M. F., Excitations in Disordered Systems (1982), Plenum Press: Plenum Press New York
[149] Sahimi, M., Heterogeneous Materials: Linear Transport and Optical Properties, vol. 1 (2003), Springer · Zbl 1028.74001
[150] Saberi, A. A., Growth models on the Bethe lattice, Europhys. Lett., 103, 10005 (2013)
[151] Häggström, O.; Peres, Y.; Schonmann, R. H., Percolation on transitive graphs as a coalescent process: Relentless merging followed by simultaneous uniqueness, (Perplexing Problems in Probability (1999), Birkhäuser: Birkhäuser Boston), 69-90 · Zbl 0948.60098
[152] Erdős, P.; Rényi, A., On random graphs, I. Publ. Math. Debrecen, 6, 290-297 (1959) · Zbl 0092.15705
[153] Erdős, P.; Rényi, A., On the evolution of random graphs, Magyar Tud. Akad. Mat. Kutató Int. Közl., 5, 17-61 (1960) · Zbl 0103.16301
[154] Erdős, P.; Rényi, A., On the evolution of random graphs, Bull. Inst. Internat. Statist., 38, 343-347 (1961) · Zbl 0106.12006
[155] Erdős, P.; Rényi, A., On the strength of connectedness of a random graph, Acta Math. Acad. Sci. Hungar., 12, 261-267 (1961) · Zbl 0103.16302
[156] Bollobás, B., (Random Graphs. Random Graphs, Cambridge Studies in Advanced Mathematics, vol. 73 (2001), Cambridge University Press: Cambridge University Press Cambridge) · Zbl 0979.05003
[157] Janson, S.; Luczak, T.; Rucinski, A., Random graphs, (Wiley-Interscience Series in Discrete Mathematics and Optimization (2000), Wiley-Interscience: Wiley-Interscience New York) · Zbl 0968.05003
[159] Barabási, A.; Albert, R., Emergence of scaling in random networks, Science, 286, 509-512 (1999) · Zbl 1226.05223
[160] Watts, D.; Strogatz, S., Collective dynamics of ‘small-world’ networks, Nature, 393, 409 (1998) · Zbl 1368.05139
[161] Durrett, R., Random Graph Dynamics (2007), Cambridge Univ. Press: Cambridge Univ. Press Cambridge · Zbl 1116.05001
[162] Watts, D. J., Small worlds. The dynamics of networks between order and randomness, (Princeton Studies in Complexity (1999), Princeton University Press: Princeton University Press Princeton, NJ)
[163] Britton, T.; Deijfen, M.; Martin-Löf, A., Generating simple random graphs with prescribed degree distribution, J. Stat. Phys., 124, 6, 1377-1397 (2006) · Zbl 1106.05086
[164] Monasson, R., Lectures on random graphs and maps, (Netadis Summer School on Complex Systems (2013)), available online at: http://www.phys.ens.fr/ monasson/Netadis/index.html
[165] Privman, V.; Hohenberg, P. C.; Aharony, A., (Domb, C.; Lebowitz, J. L., Universal Critical-Point Amplitude Relations. Universal Critical-Point Amplitude Relations, Phase Transition and Critical Phenomena, vol. 14 (1991), Academic Press: Academic Press New York)
[166] Aharony, A., Universal critical amplitude ratios for percolation, Phys. Rev. B, 22, 400 (1980)
[167] Delfino, G.; Viti, J.; Cardy, J., Universal amplitude ratios of two-dimensional percolation from field theory, J. Phys. A, Math. and Theor., 43, 15 (2010), Online · Zbl 1187.82021
[168] Grassberger, P., On the spreading of two-dimensional percolation, J. Phys. A, 18, L215-L219 (1985)
[169] Zhou, Z.; Yang, J.; Deng, Y.; Ziff, R. M., Shortest-path fractal dimension for percolation in two and three dimensions, Phys. Rev. E, 86, 061101 (2012)
[170] Coniglio, A., Cluster structure near the percolation threshold, J. Phys. A: Math. Gen., 15, 3829 (1982)
[171] Cohen, R.; Havlin, S., Fractal dimensions of percolating networks, Physica A, 336, 6-13 (2004)
[172] Wu, F. Y., Percolation and the Potts model, J. Stat. Phys., 18, 115-123 (1978)
[173] Bastas, N.; Giazitzidis, P.; Maragakis, M.; Kosmidis, K., Explosive percolation: Unusual transitions of a simple model, Physica A, 407, 54-65 (2014)
[174] Martino, D. D.; Dall’Asta, L.; Bianconi, G.; Marsili, M., Congestion phenomena on complex networks, Phys. Rev. E, 79, 015101(R) (2009)
[175] Leyva, I.; Navas, A.; Sendina-Nadal, I.; Almendral, J. A.; Buldú, J. M.; Zanin, M.; Papo, D.; Boccaletti, S., Explosive transitions to synchronization in networks of phase oscillators, Sci. Rep., 3 (2013)
[176] Gómez-Gardeñes, J.; Gómez, S.; Arenas, A.; Moreno, Y., Explosive synchronization transitions in scale-free networks, Phys. Rev. Lett., 106, 128701 (2011)
[177] Pan, R. K.; Kivelä, M.; Saramäki, J.; Kaski, K.; Kertész, J., Using explosive percolation in analysis of real-world networks, Phys. Rev. E, 83, 046112 (2011)
[178] Bohman, T.; Frieze, A., Avoiding a giant component, Random Structures Algorithms, 19, 75-85 (2001) · Zbl 0986.05091
[179] Spencer, J.; Wormald, N., Birth control for giants, Combinatorica, 27, 587-628 (2007) · Zbl 1164.05062
[180] Beveridge, A.; Bohman, T.; Frieze, A.; Pikhurko, O., Product rule wins a competitive game, Proc. Am. Math. Soc., 135, 3061-3071 (2007) · Zbl 1120.05081
[181] Krivelevich, M.; Lubetzky, E.; Sudakov, B., Hamiltonicity thresholds in Achlioptas processes, Random Structures Algorithms, 37, 1-24 (2010) · Zbl 1204.60016
[182] Bollobás, B., The evolution of random graphs, Trans. Amer. Math. Soc., 286, 257-274 (1984) · Zbl 0579.05046
[183] Riordan, O.; Warnke, L., Achlioptas process phase transitions are continuous, Ann. Appl. Probab., 22, 1450-1464 (2012) · Zbl 1255.05176
[184] Stanley, H. E., Introduction to Phase Transitions and Critical Phenomena (1971), Clarendom Press: Clarendom Press Oxford
[185] Sornette, D., Critical Phenomena in Natural Sciences: Chaos, Fractals, Selforganization and Disorder: Concepts and Tools (2006), Springer Science & Business · Zbl 1094.82001
[186] da Costa, R. A.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Explosive percolation transition is actually continuous, Phys. Rev. Lett., 105, 255701 (2010)
[187] Nagler, J.; Tiessen, T.; Gutch, H. W., Continuous percolation with discontinuities, Phys. Rev. X, 2, 031009 (2012)
[188] Panagiotou, K.; Spöhel, R.; Steger, A.; Thomas, H., Explosive percolation in Erdős-Rényi-like random graph processes, Electron. Notes Discrete Math., 38, 699-704 (2011) · Zbl 1274.05441
[189] Choi, W.; Yook, S.-H.; Kim, Y., Explosive site percolation with a product rule, Phys. Rev. E, 84, 020102 (2011)
[190] Cho, Y. S.; Hwang, S.; Herrmann, H. J.; Kahng, B., Avoiding a spanning cluster in percolation models, Science, 339, 1185 (2013)
[191] Araújo, N. A.M.; Andrade, J. S.; Ziff, R. M.; Herrmann, H. J., Tricritical point in explosive percolation, Phys. Rev. Lett., 106, 095703 (2011)
[192] Schrenk, K. J.; Araújo, N. A.M.; Andrade, J. S.; Herrmann, H. J., Fracturing ranked surfaces, Sci. Rep., 2, 348 (2012)
[194] Schröder, M.; Ebrahimnazhad Rahbari, S. H.; Nagler, J., Crackling noise in fractional percolation, Nature Commun., 4, 2222 (2013)
[195] Houle, P. A.; Sethna, J. P., Acoustic emission from crumpling paper, Phys. Rev. E, 54, 278-283 (1996)
[196] Gutenberg, B.; Richter, C. F., Seismicity of the Earth and Associated Phenomena (1954), Princeton Univ. Press
[197] Aharony, A.; Harris, A. B., Absence of self-averaging and universal fluctuations in random systems near critical points, Phys. Rev. Lett., 77, 3700-3703 (1996)
[198] Riordan, O.; Warnke, L., Achlioptas processes are not always self-averaging, Phys. Rev. E., 86, 011129 (2012)
[199] Chen, W.; Nagler, J.; Cheng, X.; Jin, X.; Shen, H.; Zheng, Z.; D’Souza, R. M., Phase transitions in supercritical explosive percolation, Phys. Rev. E, 87, 052130 (2013)
[200] Chen, W.; Cheng, X.; Zheng, Z.; Chung, N. N.; D’Souza, R. M.; Nagler, J., Unstable supercritical discontinuous percolation transitions, Phys. Rev. E, 88, 042152 (2013)
[201] Chen, W.; Schröder, M.; D’Souza, R. M.; Sornette, D.; Nagler, J., Microtransition cascades to percolation, Phys. Rev. Lett., 112, 155701 (2014)
[202] Du, C.; Satik, C.; Yortsos, Y. C., Percolation in a fractional Brownian motion lattice, AIChE J., 42, 2392 (1996)
[203] Coniglio, A.; Stanley, H. E.; Klein, W., Site-bond correlated-percolation problem: a statistical mechanical model of polymer gelation, Phys. Rev. Lett., 42, 518 (1979)
[204] Makse, H. A.; Havlin, S.; Stanley, H. E., Modelling urban growth patterns, Nature, 377, 608 (1995)
[205] Makse, H. A.; Andrade, J. S.; Batty, M.; Havlin, S.; Stanley, H. E., Modeling urban growth patterns with correlated percolation, Phys. Rev. E, 58, 7054 (1998)
[206] Makse, H. A.; Andrade, J. S.; Stanley, H. E., Tracer dispersion in a percolation network with spatial correlations, Phys. Rev. E, 61, 583 (2000)
[207] Araújo, A. D.; Moreira, A. A.; Makse, H. A.; Stanley, H. E.; Andrade, J. S., Traveling length and minimal traveling time for flow through percolation networks with long-range spatial correlations, Phys. Rev. E, 66, 046304 (2002)
[208] Araújo, A. D.; Moreira, A. A.; Costa Filho, R. N.; Andrade, J. S., Statistics of the critical percolation backbone with spatial long-range correlations, Phys. Rev. E, 67, 027102 (2003)
[209] Harris, A. B., Effect of random defects on the critical behaviour of Ising models, J. Phys. C, 7, 1671 (1974)
[210] Weinrib, A., Long-range correlated percolation, Phys. Rev. B, 29, 387 (1984)
[211] Marinov, V. I.; Lebowitz, J. L., Percolation in the harmonic crystal and voter model in three dimensions, Phys. Rev. E, 74, 031120 (2006)
[212] Prakash, S.; Havlin, S.; Schwartz, M.; Stanley, H. E., Structural and dynamical properties of long-range correlated percolation, Phys. Rev. A, 46, R1724 (1992)
[213] Abete, T.; de Candia, A.; Lairez, D.; Coniglio, A., Percolation model for enzyme gel degradation, Phys. Rev. Lett., 93, 228301 (2004)
[214] Adler, J., Bootstrap percolation, Physica A, 171, 453-470 (1991)
[215] Adler, J.; Lev, U., Bootstrap percolation: Visualizations and applications, Braz. J. Phys., 33, 641 (2003)
[216] Adler, J.; Aharony, A., Diffusion percolation. I. Infinite time limit and bootstrap percolation, J. Phys. A, 21, 1387 (1988)
[217] Eckmann, J.-P.; Feinerman, O.; Gruendlinger, L.; Moses, E.; Soriano, J.; Tlusty, T., The physics of living neural networks, Phys. Rep., 449, 54-76 (2007)
[218] Soriano, J.; Martínez, M. R.; Tlusty, T.; Moses, E., Development of input connections in neural cultures, Proc. Natl. Acad. Sci. USA, 105, 13758-13763 (2008)
[219] Goltsev, A. V.; de Abreu, F. V.; Dorogovtsev, S. N.; Mendes, J. F.F., Stochastic cellular automata model of neural networks, Phys. Rev. E, 81, 061921 (2010)
[220] Sabhapandit, S.; Dhar, D.; Shukla, P., Hysteresis in the random-field Ising model and bootstrap percolation, Phys. Rev. Lett., 88, 197202 (2002)
[221] Holroyd, A. E., Sharp metastability threshold for two-dimensional bootstrap percolation, Probab. Theory Related Fields, 125, 195-224 (2003) · Zbl 1042.60065
[222] Holroyd, A. E., The metastability threshold for modified bootstrap percolation in \(d\) dimensions, Electron. J. Probab., 11, 418-433 (2006) · Zbl 1112.60080
[223] Balogh, J.; Bollobás, B., Bootstrap percolation on the hypercube, Probab. Theory Related Fields, 134, 624-648 (2006) · Zbl 1087.60068
[224] Cerf, R.; Cirillo, E. N., Finite size scaling in three-dimensional bootstrap percolation, Ann. Probab., 27, 1837-1850 (1999) · Zbl 0960.60088
[225] Schonmann, R. H., On the behaviour of some cellular automata related to bootstrap percolation, Ann. Probab., 20, 174-193 (1992) · Zbl 0742.60109
[226] Aizenman, M.; Lebowitz, J. L., Metastability effects in bootstrap percolation, J. Phys. A., 21, 3801-3813 (1988) · Zbl 0656.60106
[227] Cerf, R.; Manzo, F., The threshold regime of finite volume bootstrap percolation, Stochastic Process. Appl., 101, 69-82 (2002) · Zbl 1075.82010
[228] Balogh, J.; Bollobás, B.; Duminil-Copin, H.; Morris, R., The sharp threshold for bootstrap percolation in all dimensions, Trans. Amer. Math. Soc., 364, 2667-2701 (2012) · Zbl 1238.60108
[229] Adler, J.; Stauffer, D.; Aharony, A., Comparison of bootstrap percolation models, J. Phys. A, 22, L297-L301 (1989)
[230] Gravner, J.; Holroyd, A. E., Slow convergence in bootstrap percolation, Ann. Appl. Probab., 909-928 (2008) · Zbl 1141.60062
[231] Balogh, J.; Pittel, B. G., Bootstrap percolation on the random regular graph, Random Structures Algorithms, 30, 257-286 (2007) · Zbl 1106.60076
[232] Fontes, L. R.G.; Schonmann, R. H., Bootstrap percolation on homogeneous trees has 2 phase transitions, J. Stat. Phys., 132, 839-861 (2008) · Zbl 1158.82007
[233] Balogh, J.; Peres, Y.; Pete, G., Bootstrap percolation on infinite trees and non-amenable groups, Combin. Probab. Comput., 15, 715-730 (2006) · Zbl 1102.60086
[234] Amini, H.; Fountoulakis, N., Bootstrap percolation in power-law random graphs, J. Stat. Phys., 155, 72-92 (2014) · Zbl 1291.82052
[235] Janson, S.; Łuczak, T.; Turova, T.; Vallier, T., Bootstrap percolation on the random graph \(G_{n, p}\), Ann. Appl. Probab., 22, 1989-2047 (2012) · Zbl 1254.05182
[236] Baxter, G. J.; Dorogovtsev, S. N.; Goltsev, A. V.; Mendes, J. F.F., Bootstrap percolation on complex networks, Phys. Rev. E, 82, 011103 (2010)
[237] Bollobás, B., In Graph theory and combinatorics, (Bollobas, B., Proc. of the Cambridge Combinatorial Conf. in Honour of Paul Erdos (1984), Academic Press: Academic Press New York), 35-37 · Zbl 0552.05047
[238] Pittel, B.; Spencer, J.; Wormald, N., Sudden emergence of a giant \(k\)-core in a random graph, J. Combin. Theory Ser. B, 67, 111-151 (1996) · Zbl 0860.05065
[239] Hinrichsen, H., Nonequilibrium critical phenomena and phase transitions into absorbing states, Adv. Phys., 49, 815-958 (2000)
[240] Liggett, T. M., Interacting Particle Systems (1985), Springer: Springer Berlin · Zbl 0832.60094
[241] Dickman, R.; Burschka, M., Nonequilibrium critical poisoning in a single-species model, Phys. Lett. A, 127, 132-137 (1988)
[242] Grassberger, P., On the critical behavior of the general epidemic process and dynamical percolation, Math. Biosci., 62, 157-172 (1982) · Zbl 0531.92027
[243] Nahmias, J.; Téphany, H.; Guyon, E., Propagation of combustion on a heterogeneous two-dimensional network, Rev. Phys. Appl., 24, 773-777 (1989)
[244] Albano, E. V., Spreading analysis and finite-size scaling study of the critical behavior of a forest fire model with immune trees, Physica A, 216, 213-216 (1995)
[245] Albano, E. V., Critical behaviour of a forest fire model with immune trees, J. Phys. A, 27, L881-L886 (1994) · Zbl 0850.82030
[246] Parshani, R.; Dickison, M.; Cohen, R.; Stanley, H. E.; Havlin, S., Dynamic networks and directed percolation, Europhys. Lett., 90, 38004 (2010)
[247] Jensen, I., Low-density series expansions for directed percolation on square and triangular lattices, J. Phys. A, 29, 7013 (1996) · Zbl 0905.60077
[248] Jensen, I., Low-density series expansions for directed percolation: I. A new efficient algorithm with applications to the square lattice, J. Phys. A, 32, 5233 (1999) · Zbl 0961.82016
[249] Wang, J.; Zhou, Z.; Liu, Q.; Garoni, T. M.; Deng, Y., High-precision Monte Carlo study of directed percolation in (d+1) dimensions, Phys. Rev. E, 88, 042102 (2013)
[250] Janssen, H. K., On the nonequilibrium phase transition in reaction-diffusion systems with an absorbing stationary state, Z. Phys. B, 42, 151-154 (1981)
[251] Grassberger, P., On phase transitions in Schlögl’s second model, Z. Phys. B, 47, 365-374 (1982)
[252] Zamolodchikov, A. B., Irreversibility of the flux of the renormalization group in a 2d field theory, JETP Lett., 43, 730-732 (1986)
[253] Nakayama, Y., Scale invariance vs conformal invariance, Phys. Rep., 569, 1-93 (2015)
[254] Cardy, J., Critical percolation in finite geometries, J. Phys. A: Math. and Gen., 25, L201 (1992) · Zbl 0965.82501
[255] Cardy, J., Crossing formulae for critical percolation in an annulus, J. Phys. A: Math. Gen., 35, 41, L565-L572 (2002) · Zbl 1050.82023
[257] Cardy, J.; Ziff, R. M., Exact results for the universal area distribution of clusters in percolation, Ising, and Potts models, J. Stat. Phys., 110, 1-33 (2003) · Zbl 1037.82020
[258] Kager, W.; Nienhuis, B., A guide to stochastic Löwner evolution and its applications, J. Stat. Phys., 115, 1149-1229 (2004) · Zbl 1157.82327
[259] Beffara, V., The dimensions of the SLE curves, Ann. Probab., 36, 1421-1452 (2008) · Zbl 1165.60007
[260] Beffara, V., Hausdorff dimensions for \(SLE_6\), Ann. Probab., 32, 2606 (2004) · Zbl 1055.60036
[261] Lawler, G.; Schramm, O.; Werner, W., On the scaling limit of planar self-avoiding walk, (Fractal Geometry and Applications, a Jubilee of B. Mandelbrot. Fractal Geometry and Applications, a Jubilee of B. Mandelbrot, Proc. Symp. Pure Math., vol. 72 (2004)) · Zbl 1069.60089
[262] Lawler, G. F.; Schramm, O.; Werner, W., Values of Brownian intersection exponents I: Half-plane exponents, Acta Math., 187, 237-273 (2001) · Zbl 1005.60097
[263] Lawler, G. F.; Schramm, O.; Werner, W., Conformal restriction: the chordal case, J. Amer. Math. Soc., 16, 917-955 (2003) · Zbl 1030.60096
[264] Duplantier, B.; Saleur, H., Winding-angle distributions of two-dimensional self-avoiding walks from conformal invariance, Phys. Rev. Lett., 60, 2343 (1988)
[265] Wieland, B.; Wilson, D. B., Winding angle variance of Fortuin-Kasteleyn contours, Phys. Rev. E, 68, 056101 (2003)
[266] Benjamini, I.; Schramm, O., Conformal invariance of Voronoi percolation, Commun. Math. Phys., 197, 1, 75-107 (1998) · Zbl 0921.60081
[267] Aizenman, M., Scaling limit for the incipient spanning clusters, (Mathematics of Multiscale Materials, Minneapolis, MN, 1995-1996. Mathematics of Multiscale Materials, Minneapolis, MN, 1995-1996, IMA, Math. Appl., vol. 99 (1998), Springer: Springer New York), 1-24 · Zbl 0941.74013
[268] Aizenman, M.; Burchard, A., Hölder regularity and dimension bounds for random curves, Duke Math. J., 99, 419-453 (1999) · Zbl 0944.60022
[269] Saberi, A. A., Thermal behavior of spin clusters and interfaces in the two-dimensional Ising model on a square lattice, J. Stat. Mech., P07030 (2009)
[270] Bollobás, B.; Riordan, O., Percolation (2006), Cambridge University Press · Zbl 1118.60001
[271] Sun, N., Conformally invariant scaling limits in planar critical percolation, Probab. Surv., 8 (2011) · Zbl 1245.60096
[272] Beffara, V., Is critical 2D percolation universal?, (In and Out of Equilibrium. 2. In and Out of Equilibrium. 2, Progr. Probab., vol. 60 (2008), Birkhäuser: Birkhäuser Basel), 31-58 · Zbl 1173.82327
[273] Baxter, R. J.; Kelland, S. B.; Wu, F. Y., Equivalence of the Potts model or Whitney polynomial with an ice-type model, J. Phys. A, 9, 397 (1976) · Zbl 0321.05140
[274] Hu, C. K., Percolation, clusters, and phase transitions in spin models, Phys. Rev. B, 29, 5103 (1984)
[275] Feynman, R., Statistical Mechanics, A set of Lectures (1972), Benjamin: Benjamin New York
[276] Bauer, M.; Bernard, D., \(SLE_\kappa\) growth processes and conformal field theories, Phys. Lett. B, 543, 135-138 (2002) · Zbl 0997.60119
[277] Smirnov, S., Conformal invariance in random cluster models. I. Holmorphic fermions in the Ising model, Ann. of Math., 172, 1435-1467 (2010) · Zbl 1200.82011
[278] Smirnov, S., Towards conformal invariance of 2D lattice models, Eur. Math. Soc., 2, 1421-1451 (2007) · Zbl 1112.82014
[279] Fradkin, E.; Srednicki, M.; Susskind, L., Fermion representation for the \(Z_2\) lattice gauge theory in \(2 + 1\) dimensions, Phys. Rev. D, 21, 2885 (1980)
[280] Polyakov, A., Quantum geometry of bosonic strings, Phys. Lett., B 103, 207-210 (1981)
[281] Polyakov, A., Gauge Fields and Strings (1987), Harwood Academic Publishers · Zbl 1440.81010
[282] Casher, A.; Foerster, D.; Windey, P., On the reformulation of the \(d = 3\) Ising model in terms of random surfaces, Nuclear Phys., B 251, 29-49 (1985)
[283] Itzykson, C., Ising fermions (II). Three dimensions, NucI. Phys., B 210, 477-498 (1982)
[284] Sedrakyan, A., Fermionic degrees of freedom on a lattice; Particles and strings, Phys. Lett. B, 137, 397-400 (1984)
[285] Kavalov, A.; Sedrakyan, A., The sign factor of the three-dimensional Ising model and the quantum fermionic string, Phys. Lett. B, 173, 449-452 (1986)
[286] Kavalov, A.; Sedrakyan, A., Fermion representation of the three-dimensional Ising model, Nuclear Phys. B, 285, 264-278 (1987)
[287] Muller-Krumbhaar, H., The droplet model in three dimensions: Monte Carlo calculation results, Phys. Lett. A, 48, 459-460 (1974)
[289] Vening Meinesz, F. A., A remarkable feature of the earth’s topography, Proc. K. Ned. Akad. Wet. B, 54, 212-228 (1951)
[290] Mandelbrot, B., Stochastic models for the earth’s relief, the shape and the fractal dimension of coastlines, and the number-area rule for islands, Proc. Natl. Acad. Sci. USA, 72, 3825-3828 (1975)
[291] Sayles, R. S.; Thomas, T. R., Surface topography as a non-stationary random process, Nature, 271, 431-434 (1978)
[292] Newman, W. I.; Turcotte, D. L., Cascade model for fluvial geomorphology, Geophys. J. Int., 100, 433-439 (1990)
[293] Bell, T. H., Statistical features of sea-floor topography, Deep-Sea Res., 22, 883-892 (1975)
[294] Brown, S. R.; Scholz, C. H., Broad bandwidth study of the topography of natural rock surfaces, J. Geophys. Res., 90, 12575-12582 (1985)
[295] Kucinskas, A. B.; Turcotte, D. L.; Huang, J.; Ford, P. G., Fractal analysis of Venus topography in Tinatin Planatia and Ovda Regio, J. Geophys. Res., 97, 13635-13641 (1992)
[296] Mandelbrot, B., How long is the coast of Britain, Science, 156.3775, 636-638 (1967)
[297] Harvey, D. C.; Gaonac’h, H.; Lovejoy, S.; Stix, J.; Schertzer, D., Multifractal characterization of remotely sensed volcanic features: a case study from Kilauea volcano, Hawaii. Fractals, 10, 265-274 (2002)
[298] Gaonac’h, H.; Lovejoy, S.; Schertzer, D., Resolution dependence of infrared imagery of active thermal features at Kilauea Volcano, Int. J. Remote Sens., 24, 2323-2344 (2003)
[299] Pilkington, M.; Todoeschuck, J. P., Power-law scaling behavior of crustal density and gravity, Geophys. Res. Lett., 31 (2004)
[300] Pecknold, S.; Lovejoy, S.; Schertzer, D., Stratified multifractal magnetization and surface geomagnetic fields—II. Multifractal analysis and simulations, Geophys. J. Int., 145, 127-144 (2001)
[301] Rodriguez-Iturbe, I.; Rinaldo, A., Fractal River Basins: Chance and Self-Organization (1997), Cambridge University Press: Cambridge University Press Cambridge, England
[302] Gagnon, J.-S.; Lovejoy, S.; Schertzer, D., Multifractal earth topography, Nonlinear Proc. Geophys., 13, 541-570 (2006)
[303] Wegener, A., (Biram, J., The Origin of Continents and Oceans (1966), Dover: Dover New York), translated from the 1929 4th German ed
[305] Morais, P. A.; Oliveira, E. A.; Araújo, N. A.M.; Herrmann, H. J.; Andrade, J. S., Fractality of eroded coastlines of correlated landscapes, Phys. Rev. E, 84, 016102 (2011)
[306] Maritan, A.; Colaiori, F.; Flammini, A.; Cieplak, M.; Banavar, J. R., Disorder, river patterns and universality, Science, 272, 984-988 (1996)
[307] Banavar, J. R.; Colaiori, F.; Flammini, A.; Giacometti, A.; Maritan, A.; Rinaldo, A., Sculpting of a fractal river basin, Phys. Rev. Lett., 78, 4522 (1997)
[308] Cieplak, M.; Giacometti, A.; Maritan, A.; Rinaldo, A.; Rodriguez-Iturbe, I.; Banavar, J. R., Models of fractal river basins, J. Stat. Phys., 91, 1-15 (1998) · Zbl 0946.82039
[309] Colaiori, F.; Flammini, A.; Maritan, A.; Banavar, J. R., Analytical and numerical study of optimal channel networks, Phys. Rev. E, 55, 1298 (1997)
[310] Hergarten, S.; Neugebauer, H. J., Self-organized critical drainage networks, Phys. Rev. Lett., 86, 2689 (2001)
[311] Stark, C. P., An invasion percolation model of drainage network evolution, Nature, 352, 423 (1991)
[312] Herrmann, H. J.; Araújo, N. A.M., Watersheds and explosive percolation, Phys. Procedia, 15, 37-43 (2011)
[313] Golden, K. M.; Ackley, S. F.; Lytle, V. I., The percolation phase transition in sea ice, Science, 282, 2238-2241 (1998)
[314] Shannon, M. C.; Agee, C. B., Percolation of core melts at lower mantle conditions, Science, 280, 1059-1061 (1998)
[315] Mann, U.; Frost, D. J.; Rubie, D. C., The wetting ability of Si-bearing liquid Fe-alloys in a solid silicate matrix—percolation during core formation under reducing conditions?, Phys. Earth Planet. Inter., 167, 1-7 (2008)
[316] Sapoval, B., Fractals (1989), Aditech: Aditech Paris
[317] Richardson, L. F., The problem of contiguity, Gen. Syst. Yearbook, 6, 139-187 (1961)
[318] Kardar, M.; Parisi, G.; Zhang, Y. C., Dynamic scaling of growing interfaces, Phys. Rev. Lett., 56, 889 (1986) · Zbl 1101.82329
[319] Breyer, S. P.; Scott Snow, R., Drainage basin perimeters: a fractal significance, Geomorphology, 143-157 (1992)
[320] Fehr, E.; Kadau, D.; Araújo, N. A.M.; Andrade, J. S.; Herrmann, H. J., Scaling relations for watersheds, Phys. Rev. E, 84, 036116 (2011)
[321] Porto, M.; Havlin, S.; Schwarzer, S.; Bunde, A., Optimal path in strong disorder and shortest path in invasion percolation with trapping, Phys. Rev. Lett., 79, 4060 (1997)
[322] Andrade, J. S.; Oliveira, E. A.; Moreira, A. A.; Herrmann, H. J., Fracturing the optimal paths, Phys. Rev. Lett., 103, 225503 (2009)
[323] Moreira, A. A.; Oliveira, C. L.N.; Hansen, A.; Araújo, N. A.M.; Herrmann, H. J.; Andrade, J. S., Fracturing Highly Disordered Materials, Phys. Rev. Lett., 109, 255701 (2012)
[324] Farr, T. G.; Rosen, P. A.; Caro, E.; Crippen, R.; Duren, R.; Hensley, S.; Kobrick, M.; Paller, M.; Rodriguez, E.; Roth, L.; Seal, D.; Shaffer, S.; Shimada, J.; Umland, J.; Werner, M.; Oskin, M.; Burbank, D.; Alsdorf, D., The shuttle radar topography mission, Rev. Geophys., 45, 33 (2007)
[325] Bak, P., How Nature Works (1996), Copernicus: Copernicus New York · Zbl 0894.00007
[326] Jensen, H. J., Self-Organized Criticality: Emergent Complex Behavior in Physical and Biological Systems, vol. 10 (1998), Cambridge University Press · Zbl 0945.70001
[327] Sornette, D., Critical Phenomena in Natural Sciences (2000), Springer: Springer Heidelberg · Zbl 0977.82001
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.