×

Interpolation of geometric structures compatible with a pseudo Riemannian metric. (English) Zbl 1357.53035

The starting point for this paper is the paper of the third author [Ann. Mat. Pura Appl. (4) 194, No. 5, 1505–1525 (2015; Zbl 1325.53106)], where the concept of interpolation of supplementary compatible geometric structures is introduced. In the case of a complex manifold \((M,j)\) the third author obtained six families of distinguished generalized complex or paracomplex structures on \(M\). Each of them interpolates between two geometric structures on \(M\) compatible with \(j\), for instance, between totally real foliations and Kähler structures, or between hypercomplex and \(\mathbb{C}\)-symplectic structures. A similar analysis was carried out for a symplectic manifold \((M,\omega)\) obtaining the notion of a structure generalizing \(\mathbb{C}\)-symplectic structures and bi-Lagrangian foliations.
In the present paper the authors obtain similar results, starting from a pseudo-Riemannian manifold \((M,g)\). First, they recall the definitions and properties of generalized complex or paracomplex structures. They present some geometric structures on \(M\) compatible with \(g\) such as \((\lambda,0)\)- or \((0,l)\)-structures, with \(\lambda, l=\pm 1\). For example, in the cases \(\lambda =-1\) and \(l=-1\), one obtains the anti-Hermitian and almost pseudo-Kähler structures, respectively. Next, one can define families of generalized complex or paracomplex structures on \(M\), called integrable \((\lambda, l)\)- structures which, in a certain sense, interpolate between integrable \((\lambda,0)\)- and \((0,l)\)-structures on \(M\). For a bilinear form \(c\) on a real vector space \(V\), one denotes by \(c^\flat\in \mathrm{End}(V,V^*)\) the endomorphism defined by \(c^\flat(u)(v)=c(u,v)\). The form \(c\) is symmetric (respectively, skew-symmetric) if \((c^\flat)^*=c^\flat\) (respectively \((c^\flat)^*=-c^\flat\)). Considering a pseudo-Riemannian manifold \((M,g)\), for \(k=-1\) or \(k=1\), one denotes by \( I_k\) the complex, respectively paracomplex structure on \(TM\) given by \( I_k=\left(\begin{matrix} 0 & k(g^\flat)^{-1}\cr g^\flat & 0\end{matrix}\right)\). A generalized complex structure \(S\) (for \(\lambda =-1\)) or a generalized paracomplex structure \(S\) (for \(\lambda =1)\) is an integrable \((\lambda, l)\)-structure on \((M,g)\) if \(SI_k=-I_kS\), where \(k=-\lambda l\).
The authors prove Theorem 3.6: Consider a pseudo-Riemannian manifold \((M,g)\). Then, for \(\lambda =\pm 1,\;l=\pm 1\), the integrable \((\lambda, l)\)-structures on \((M,g)\) interpolate between integrable \((\lambda,0)\)- and \((0,l)\)-structures on \((M,g)\). Next they obtain the explicit form of the integrable \((\lambda,l)\)-structure \(S\) on the Riemannian manifold \((M,g)\). Moreover, the authors obtain the signature associated to an integrable \((1,1)\)-structure on \((M,g)\). Next they introduce the integrable \((1,1;n)\)-structures on \((M,g)\). In the next section, the authors consider the \((\lambda,l)\)-twistor bundles over \((M,g)\). They interpret the integrable \((\lambda,l)\)-structures on the pseudo-Riemannian manifold \((M,g)\) of dimension \(m\) and signature \((p,q)\), as smooth sections in a certain fiber bundle with fiber \(G/H\), where the group \(G\) and its subgroup \(H\) are defined according to the type of the considered \((\lambda,l)\)-structure. Finally, the authors study integrable \((-1,-1)\)-structures on nilmanifolds.

MSC:

53C15 General geometric structures on manifolds (almost complex, almost product structures, etc.)
53C56 Other complex differential geometry
53D05 Symplectic manifolds (general theory)
53B35 Local differential geometry of Hermitian and Kählerian structures
53B30 Local differential geometry of Lorentz metrics, indefinite metrics
22F50 Groups as automorphisms of other structures
22F30 Homogeneous spaces

Citations:

Zbl 1325.53106

References:

[1] Andrada, A.: Complex product structures on 6-dimensional nilpotent Lie algebras. Forum Math. 20, 285-315 (2008) · Zbl 1176.17006 · doi:10.1515/FORUM.2008.015
[2] Apostolov, V., Draghici, T.: The Curvature and the Integrability of Almost Kahler Manifolds: A Survey, Symplectic and Contact Topology: Interactions and Perspectives, Fields Institute Communications, 35. American Mathematical Society, Providence (2003) · Zbl 1050.53031
[3] de Andrés, L.C., Barberis, M.L., Dotti, I., Fernández, M.: Hermitian structures on cotangent bundles of four dimensional solvable Lie groups. Osaka J. Math. 44, 765-793 (2007) · Zbl 1151.53064
[4] Borowiec, A., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds. Differ. Geom. Appl. 12, 281-289 (2000) · Zbl 0972.53043 · doi:10.1016/S0926-2245(00)00017-6
[5] Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631-661 (1990) · Zbl 0850.70212 · doi:10.1090/S0002-9947-1990-0998124-1
[6] Cavalcanti, G.R., Gualtieri, M.: Generalized complex structures on nilmanifolds. J. Symplectic Geom. 2, 393-410 (2004) · Zbl 1079.53106 · doi:10.4310/JSG.2004.v2.n3.a5
[7] Crainic, M.: Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42, 559-578 (2011) · Zbl 1242.53101 · doi:10.1007/s00574-011-0029-0
[8] Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26, 83-115 (1996) · Zbl 0856.53049 · doi:10.1216/rmjm/1181072105
[9] Etayo, F., Santamaría, R., Trías, U.J.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24, 33-59 (2006) · Zbl 1101.53047 · doi:10.1016/j.difgeo.2005.07.002
[10] Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343-369 (1972) · Zbl 0275.53026
[11] Gualtieri, M.: Generalized complex geometry. Ann. Math. (2) 174, 75-123 (2011) · Zbl 1235.32020 · doi:10.4007/annals.2011.174.1.3
[12] Harvey, F.R.: Spinors and Calibrations, Perspectives in Mathematics 9, 1st edn. Academic, Boston (1990) · Zbl 0694.53002
[13] Harvey, FR; Lawson, HB; Dai, X. (ed.); Rong, X. (ed.), Split special Lagrangian geometry, No. 297, 43-89 (2012), Berlin · Zbl 1250.53048 · doi:10.1007/978-3-0348-0257-4_3
[14] Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281-308 (2003) · Zbl 1076.32019 · doi:10.1093/qmath/hag025
[15] Kowalski, O.: Generalized Symmetric Spaces, Lecture Notes Math. 805, (1980) · Zbl 0431.53042
[16] Oproiu, V., Papaghiuc, N.: Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math. 1, 269-282 (2004) · Zbl 1072.53022 · doi:10.1007/s00009-004-0015-5
[17] Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157, 311-333 (2001) · Zbl 1020.17006 · doi:10.1016/S0022-4049(00)00033-5
[18] Salvai, M.: Generalized geometric structures on complex and symplectic manifolds. Ann. Mat. Pura Appl. 194(4), 1505-1525 (2015) · Zbl 1325.53106 · doi:10.1007/s10231-014-0431-5
[19] Vaisman, I.: Reduction and submanifolds of generalized complex manifolds. Differ. Geom. Appl. 25, 147-166 (2007) · Zbl 1126.53049 · doi:10.1016/j.difgeo.2006.08.007
[20] Wade, A.: Dirac structures and paracomplex manifolds. C. R. Math. Acad. Sci. Paris 338, 889-894 (2004) · Zbl 1057.53019 · doi:10.1016/j.crma.2004.03.031
[21] Yano, K.: Differential geometry of complex and almost complex spaces. In: International Series on Monographs in Pure and Applied Mathematics, vol. 49. A Pergamon Press Book, The Macmillan Co., New York, (1965), xii+326 pp · Zbl 0127.12405
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.