×

Reduced measures for semilinear elliptic equations involving Dirichlet operators. (English) Zbl 1357.35140

In this paper, the author studies semilinear equations of the form \[ Au = f (x, u) + \mu, \] where \(E\) is a separable locally compact metric space, \(\mu\) is a Borel measure on \(E\), \(f : E\times \mathbb R \to \mathbb R\) is a measurable function such that \(f (\cdot, u) = 0\) for \(u\leq 0\), and f is nonincreasing and continuous with respect to \(u\). While \(A\) is a negative definite and self-adjoint Dirichlet operator on \(L^2(E;m)\). Here, \(m\) is a Radon measure on \(E\) such that \(\operatorname{supp}[m] = E\).
Along the paper, the author introduces the definition of probabilistic solution for the problem under consideration. In this context, he proves some comparison results, a priori estimates, some regularity results of solutions, the so-called inverse maximum principle and Kato’s type inequality.

MSC:

35J61 Semilinear elliptic equations
35J75 Singular elliptic equations
60J45 Probabilistic potential theory
35B51 Comparison principles in context of PDEs
35B65 Smoothness and regularity of solutions to PDEs
35B45 A priori estimates in context of PDEs

References:

[1] Adams, D.R., Hedberg, L.I.: Function spaces and potential theory. Springer-Verlag, Berlin (1996) · Zbl 0834.46021 · doi:10.1007/978-3-662-03282-4
[2] Bénilan, P., Brezis, H.: Nonlinear problems related to the Thomas-Fermi equation. J. Evol. Equ. 3, 673-770 (2004) · Zbl 1150.35406 · doi:10.1007/s00028-003-0117-8
[3] Blumenthal, M.R., Getoor, R.K.: Markov processes and potential theory. Dover Publications, New York (2007) · Zbl 1230.60002
[4] Brezis, H., Marcus, M., Ponce, A.C.: A new concept of reduced measure for nonlinear elliptic equations. C. R. Math. Acad. Sci. 339, 169-174 (2004) · Zbl 1101.35029 · doi:10.1016/j.crma.2004.05.012
[5] Brezis, H., Marcus, M., Ponce, A.C.: Nonlinear elliptic equations with measures revisited. In: Mathematical Aspects of Nonlinear Dispersive Equations (J. Bourgain, C. Kenig, S. Klainerman, eds.), Annals of Mathematics Studies, 163, Princeton University Press, Princeton, NJ, 55-110 (2007) · Zbl 1151.35034
[6] Brezis, H., Ponce, A.C.: Kato’s inequality when \[\Delta u\] Δu is a measure. C. R. Math. Acad. Sci. Paris 338, 599-604 (2004) · Zbl 1101.35028 · doi:10.1016/j.crma.2003.12.032
[7] Brezis, H., Strauss, W.A.: Semilinear second-order elliptic equations in \[L^1\] L1. J. Math. Soc. Japan 25, 565-590 (1973) · Zbl 0278.35041 · doi:10.2969/jmsj/02540565
[8] Chen, H., Véron, L.: Semilinear fractional elliptic equations involving measures. J. Differ. Equ. 257, 1457-1486 (2014) · Zbl 1290.35305 · doi:10.1016/j.jde.2014.05.012
[9] Çinlar, E., Jacod, J., Protter, P., Sharpe, M.J.: Semimartingales and markov processes. Z. Wahrscheinlichkeitstheorie verw. Gebiete 54, 161-219 (1980) · Zbl 0443.60074 · doi:10.1007/BF00531446
[10] Dellacherie, C., Meyer, P.A.: Probabilities and potential B. North-Holland, Amsterdam (1982) · Zbl 0494.60002
[11] Dellacherie, C., Meyer, P.A.: Probabilities and Potential C. North-Holland, Amsterdam (1988) · Zbl 0716.60001
[12] Fukushima, M., Oshima, Y., Takeda, M.: Dirichlet forms and symmetric Markov processes. Walter de Gruyter, Berlin (1994) · Zbl 0838.31001 · doi:10.1515/9783110889741
[13] Fukushima, M., Sato, K., Taniguchi, S.: On the closable parts of pre-Dirichlet forms and the fine supports of underlying measures. Osaka J. Math. 28, 517-535 (1991) · Zbl 0756.60071
[14] Getoor, R.K., Glover, J.: Riesz decomposition in Markov process theory. Trans. Amer. Math. Soc. 285, 107-132 (1984) · Zbl 0547.60076 · doi:10.1090/S0002-9947-1984-0748833-1
[15] Gurarie, D.: On \[L^p\] Lp-domains of fractional powers of singular elliptic operators and Kato’s conjecture. J. Oper. Theory 27, 193-203 (1992) · Zbl 0827.47010
[16] Jakubowski, A., Mémin, J., Pages, G.: Convergence en loi des suites d’intégrales stochastiques sur l’espace \[D^1\] D1. Probab. Theory Relat. Fields 81, 111-137 (1989) · Zbl 0638.60049 · doi:10.1007/BF00343739
[17] Klimsiak, T., Rozkosz, A.: Dirichlet forms and semilinear elliptic equations with measure data. J. Funct. Anal. 265, 890-925 (2013) · Zbl 1285.35038 · doi:10.1016/j.jfa.2013.05.028
[18] Klimsiak, T., Rozkosz, A.: Renormalized solutions of semilinear equations involving measure data and operator corresponding to Dirichlet form. NoDEA Nonlinear Differ. Equ. Appl. 22, 1911-1934 (2015) · Zbl 1328.35263 · doi:10.1007/s00030-015-0350-1
[19] Klimsiak, T., Rozkosz, A.: Semilinear elliptic equations with measure data and quasi-regular Dirichlet forms. Colloq. Math. 145, 35-67 (2016). doi:10.4064/cm6466-10-2015 · Zbl 1408.35234
[20] Klimsiak, T., Rozkosz, A.: On the structure of bounded smooth measures associated with quasi-regular Dirichlet form. Available at arXiv:1410.4927 · Zbl 1375.31014
[21] Konishi, Y.: Une remarque sur la perturbation d’opérateurs \[m\] m-accrétifs dans un espace de Banach. Proc. Japan Acad. 48, 157-160 (1972) · Zbl 0249.47047 · doi:10.3792/pja/1195519722
[22] Kulczycki, T.: Properties of Green function of symmetric stable processes. Probab. Math. Statist. 17, 339-364 (1997) · Zbl 0903.60063
[23] Ma, Z., Röckner, M.: Introduction to the theory of (non-symmetric) Dirichlet forms. Springer-Verlag, Berlin (1992) · Zbl 0826.31001 · doi:10.1007/978-3-642-77739-4
[24] Oshima, Y.: Semi-Dirichlet forms and Markov processes. Walter de Gruyter, Berlin (2013) · Zbl 1286.60002 · doi:10.1515/9783110302066
[25] Protter, P.: Stochastic integration and differential equations, 2nd edn. Springer, Berlin (2004) · Zbl 1041.60005
[26] Sharpe, M.: General theory of Markov processes. Academic Press, New York (1988) · Zbl 0649.60079
[27] Stampacchia, G.: Le problème de Dirichlet pour les équations elliptiques du second ordre à coefficients discontinus. Ann. Inst. Fourier (Grenoble) 15, 189-258 (1965) · Zbl 0151.15401 · doi:10.5802/aif.204
[28] Véron, L.: Elliptic equations involving measures. Stationary partial differential equations, Vol. I, 593-712. Handb. Differ. Equ., North- Holland, Amsterdam (2004) · Zbl 1129.35478
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.