×

On Cohen-Macaulayness of algebras generated by generalized power sums. With an appendix by Misha Feigin. (English) Zbl 1357.13016

Let \(a_{ij}\in \mathbb{C}\), \(i\geq 1\), \(1\leq j\leq N\), be nonzero complex numbers. Polynomials \(Q_i=Q_i(x_1,\ldots,x_N) =\sum^N_{j=1}a_{ij}x^i_j\) are called generalized power sums. The main question studied in this paper is when the algebra generated by \(Q_i\), \(i\geq 1\) inside \(\mathbb{C}[x_1,\ldots,x_N]\) is Cohen-Macaulay (shortly, \(CM\)).
Specifically, following [A. Brookner et al., “On Cohen-Macaulayness of \(S^n\)-invariant subspace arrangements”, Preprint, arXiv:1410.5096], for various collections of positive integers \((r_1,\ldots,r_k)\) with \(\sum r_i = N\), the authors study the \(CM\) property of algebras of generalized power sums with symmetry type \((r_1,\ldots,r_k)\) (i.e.symmetric in the first \(r_1\) variables, the next \(r_2\) variables, etc.). Using representation theoretic results and deformation theory, the authors establish Cohen-Macaulayness of the algebra of \(q,t\)-deformed power sums defined by A. N. Sergeev and A. P. Veselov [Commun. Math. Phys. 245, No. 2, 249–278 (2004; Zbl 1062.81097)] and of some generalizations of this algebra, proving a conjecture of A.Brookner, D.Corwin, P.Etingof, S.Sam.
Representation-theoretic techniques are also applied to studying \(m\)-quasi-invariants of deformed Calogero-Moser systems. In an appendix to this paper, M.Feigin uses representation theory of I. Cherednik algebras [Prog. Math. 243, 79–95 (2006; Zbl 1097.20007)] to compute Hilbert series for such quasi-invariants, and shows that in the case of one light particle, the ring of quasi-invariants is Gorenstein.

MSC:

13C14 Cohen-Macaulay modules
14M05 Varieties defined by ring conditions (factorial, Cohen-Macaulay, seminormal)
16E65 Homological conditions on associative rings (generalizations of regular, Gorenstein, Cohen-Macaulay rings, etc.)

References:

[1] Brookner, A., Corwin, D., Etingof, P., Sam, S.: On Cohen-Macaulayness of Sn-invariant subspace arrangements. Int. Math. Res. Notices 2016(7), 2104-2126 (2016). arXiv:1410.5096 · Zbl 1404.14063
[2] Berest, Yu., Etingof, P., Ginzburg, V.: Cherednik algebras and differential operators on quasi-invariants. Duke Math. J. 118(2), 279-337 (2003), corrected version arXiv:math/0111005v6 · Zbl 1067.16047
[3] Chalykh O.A., Feigin M.V., Veselov A.P.: New integrable generalizations of Calogero-Moser quantum problem. J. Math. Phys. 39(2), 695-703 (1998) · Zbl 0906.34061 · doi:10.1063/1.532347
[4] Cherednik, I.: Double affine Hecke algebras. London Mathematical Society Lecture Note Series, vol. 319. Cambridge University Press, Cambridge (2006) · Zbl 1097.20007
[5] Chalykh O.: Macdonald polynomials and algebraic integrability. Adv. Math. 166, 193-259 (2002) · Zbl 1004.33009 · doi:10.1006/aima.2001.2033
[6] Eisenbud, D.: Commutative algebra with a view towards algebraic geometry. Grad. Texts Math. 150 (1994) · Zbl 1004.33009
[7] Etingof P., Ginzburg V.: On m-quasi-invariants of a Coxeter group. Mosc. Math. J. 2(3), 555-566 (2002) · Zbl 1028.81027
[8] Etingof, P., Gorsky, E., Losev, I.: Representations of rational Cherednik algebras with minimal support and torus knots. Adv. Math. 277, 124-180 (2015). arXiv:1304.3412 · Zbl 1321.16020
[9] Feigin, M.: Generalized Calogero-Moser systems from rational Cherednik algebras. Select. Math. 18(1), 253-281 (2012). arXiv:0809.3487 · Zbl 1243.81089
[10] Feigin, M., Veselov, A.: Quasi-invariants of Coxeter groups and m-harmonic polynomials. Int. Math. Res. Notices 2002(10), 521-545 · Zbl 1009.20044
[11] Feigin, M., Veselov, A.P.: Quasi-invariants and quantum integrals of the deformed Calogero-Moser systems. Int. Math. Res. Notices 2003(46), 2487-2511 (2003). arXiv:math-ph/0303026 · Zbl 1034.81024
[12] Johnston, D.: Quasi-invariants of hyperplane arrangements. PhD thesis, University of Glasgow (2011). http://theses.gla.ac.uk/3169/1/2011johnstonphd
[13] Kirillov A.A.: Polynomial covariants of the symmetric group and some of its analogs. Funct. Anal. Appl. 18, 63-64 (1984) · Zbl 0551.20007 · doi:10.1007/BF01076369
[14] Lin X.-S., Zheng H.: On the Hecke algebras and the colored HOMFLY polynomial. Trans. Am. Math. Soc. 362(1), 1-18 (2010) · Zbl 1193.57006 · doi:10.1090/S0002-9947-09-04691-1
[15] Sergeev A., Veselov A.: Deformed quantum Calogero-Moser problems and Lie superalgebras. Comm. Math. Phys. 245, 249-278 (2004) · Zbl 1062.81097 · doi:10.1007/s00220-003-1012-4
[16] Sergeev A., Veselov A.: Deformed Macdonald-Ruijsenaars operators and super Macdonald polynomials. Comm. Math. Phys. 288, 653-675 (2009) · Zbl 1180.33024 · doi:10.1007/s00220-009-0779-3
[17] Shan P.: Crystals of Fock spaces and cyclotomic rational double affine Hecke algebras. Ann. Sci. Ecol. Norm. Super. 44(1), 147-182 (2011) · Zbl 1225.17019
[18] Stanley R.: Hilbert functions for graded algebras. Adv. Math. 28, 57-83 (1978) · Zbl 0384.13012 · doi:10.1016/0001-8708(78)90045-2
[19] Wilcox, S.: Supports of representations of the rational Cherednik algebra of type A. arXiv:1012.2585v2 · Zbl 1436.17015
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.