×

A mechanistic neural field theory of how anesthesia suppresses consciousness: synaptic drive dynamics, bifurcations, attractors, and partial state equipartitioning. (English) Zbl 1356.92018

Summary: With the advances in biochemistry, molecular biology, and neurochemistry there has been impressive progress in understanding the molecular properties of anesthetic agents. However, there has been little focus on how the molecular properties of anesthetic agents lead to the observed macroscopic property that defines the anesthetic state, that is, lack of responsiveness to noxious stimuli. In this paper, we use dynamical system theory to develop a mechanistic mean field model for neural activity to study the abrupt transition from consciousness to unconsciousness as the concentration of the anesthetic agent increases. The proposed synaptic drive firing-rate model predicts the conscious-unconscious transition as the applied anesthetic concentration increases, where excitatory neural activity is characterized by a Poincaré-Andronov-Hopf bifurcation with the awake state transitioning to a stable limit cycle and then subsequently to an asymptotically stable unconscious equilibrium state. Furthermore, we address the more general question of synchronization and partial state equipartitioning of neural activity without mean field assumptions. This is done by focusing on a postulated subset of inhibitory neurons that are not themselves connected to other inhibitory neurons. Finally, several numerical experiments are presented to illustrate the different aspects of the proposed theory.

MSC:

92C20 Neural biology
92C50 Medical applications (general)

References:

[1] Kitamura A, Marszalec W, Yeh JZ, Narahashi T. Effects of halothane and propofol on excitatory and inhibitory synaptic transmission in rat cortical neurons. J Pharmacol Exp Ther. 2002;304(1):162-71. · doi:10.1124/jpet.102.043273
[2] Hutt A, Longtin A. Effects of the anesthetic agent propofol on neural populations. Cogn Neurodyn. 2009;4(1):37-59. · doi:10.1007/s11571-009-9092-2
[3] Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Wilcocks LC. Toward a theory of the general-anesthetic-induced phase transition of the cerebral cortex. I. A thermodynamics analogy. Phys Rev E. 2001;64(1):011917.
[4] Steyn-Ross ML, Steyn-Ross DA, Sleigh JW. Modelling general anaesthesia as a first-order phase transition in the cortex. Prog Biophys Mol Biol. 2004;85(2):369-85. · doi:10.1016/j.pbiomolbio.2004.02.001
[5] Hui Q, Haddad WM, Bailey JM. Multistability, bifurcations, and biological neural networks: a synaptic drive firing model for cerebral cortex transition in the induction of general anesthesia. Nonlinear Anal Hybrid Syst. 2011;5(3):554-72. · Zbl 1238.93010 · doi:10.1016/j.nahs.2010.12.002
[6] Hui Q, Haddad WM, Bailey JM, Hayakawa T. A stochastic mean field model for an excitatory and inhibitory synaptic drive cortical neuronal network. IEEE Trans Neural Netw. 2014;25(4):751-63. · doi:10.1109/TNNLS.2013.2281065
[7] Haddad WM, Hui Q, Bailey JM. Human brain networks: spiking neuron models, multistability, synchronization, thermodynamics, maximum entropy production, and anesthetic cascade mechanisms. Entropy. 2014;16(7):3939-4003. · doi:10.3390/e16073939
[8] Hodgkin AL, Huxley AF. A quantitative description of membrane current and its application to conduction and excitation in nerve. J Physiol. 1952;117(4):500-44. · doi:10.1113/jphysiol.1952.sp004764
[9] Ermentrout GB, Terman DH. Mathematical foundations of neuroscience. New York: Springer; 2010. · Zbl 1320.92002 · doi:10.1007/978-0-387-87708-2
[10] Wilson HR, Cowan JD. Excitatory and inhibitory interactions in localized populations of model neurons. Biophys J. 1972;12(1):1-24. · doi:10.1016/S0006-3495(72)86068-5
[11] Gerstner W, Kistler WM. Spiking neuron models: single neurons, populations, plasticity. Cambridge: Cambridge University Press; 2002. · Zbl 1100.92501 · doi:10.1017/CBO9780511815706
[12] Steyn-Ross ML, Steyn-Ross DA, Sleigh JW, Liley D. Theoretical electroencephalogram stationary spectrum for a white-noise-driven cortex: evidence for a general anesthetic-induced phase transition. Phys Rev E. 1999;60(6):7299. · doi:10.1103/PhysRevE.60.7299
[13] Liley DT, Cadusch PJ, Wright JJ. A continuum theory of electro-cortical activity. Neurocomputing. 1999;26:795-800. · Zbl 0964.92008 · doi:10.1016/S0925-2312(98)00149-0
[14] Liley DT, Bojak I. Understanding the transition to seizure by modeling the epileptiform activity of general anesthetic agents. J Clin Neurophysiol. 2005;22(5):300-13.
[15] Ching S, Cimenser A, Purdon PL, Brown EN, Kopell NJ. Thalamocortical model for a propofol-induced α-rhythm associated with loss of consciousness. Proc Natl Acad Sci USA. 2010;107(52):22665-70. · doi:10.1073/pnas.1017069108
[16] Hutt A. The anesthetic propofol shifts the frequency of maximum spectral power in EEG during general anesthesia: analytical insights from a linear model. Front Comput Neurosci. 2013;7:2. · doi:10.3389/fncom.2013.00002
[17] Hashemi M, Hutt A, Sleigh J. Anesthetic action on extra-synaptic receptors: effects in neural population models of EEG activity. Front Syst Neurosci. 2014;8:232. · doi:10.3389/fnsys.2014.00232
[18] Tononi G. An information integration theory of consciousness. BMC Neurosci. 2004;5(1):42. · doi:10.1186/1471-2202-5-42
[19] John ER, Prichep LS. The anesthetic cascade: a theory of how anesthesia suppresses consciousness. Anesthesiol. 2005;102(2):447-71. · doi:10.1097/00000542-200502000-00030
[20] Lewis LD, Weiner VS, Mukamel EA, Donoghue JA, Eskandar EN, Madsen JR, Anderson WS, Hochberg LR, Cash SS, Brown EN, et al.. Rapid fragmentation of neuronal networks at the onset of propofol-induced unconsciousness. Proc Natl Acad Sci USA. 2012;109(49):3377-86. · doi:10.1073/pnas.1210907109
[21] Kuizenga K, Wierda J, Kalkman C. Biphasic EEG changes in relation to loss of consciousness during induction with thiopental, propofol, etomidate, midazolam or sevoflurane. Br J Anaesth. 2001;86(3):354-60. · doi:10.1093/bja/86.3.354
[22] Dayan P, Abbott LF. Theoretical neuroscience. Cambridge: MIT Press; 2005.
[23] Haddad WM, Chellaboina V. Nonlinear dynamical systems and control: a Lyapunov-based approach. Princeton: Princeton University Press; 2008. · Zbl 1142.34001
[24] Gray CM. Synchronous oscillations in neuronal systems: mechanisms and functions. J Comput Neurosci. 1994;1(1-2):11-38. · doi:10.1007/BF00962716
[25] Bullock T, McClune M, Achimowicz J, Iragui-Madoz V, Duckrow R, Spencer S. Temporal fluctuations in coherence of brain waves. Proc Natl Acad Sci USA. 1995;92(25):11568-72. · doi:10.1073/pnas.92.25.11568
[26] Buzsaki G. Rhythms of the brain. New York: Oxford University Press; 2006. · Zbl 1204.92017 · doi:10.1093/acprof:oso/9780195301069.001.0001
[27] Tinker JH, Sharbrough FW, Michenfelder JD. Anterior shift of the dominant EEG rhythm during anesthesia in the Java monkey: correlation with anesthetic potency. Anesthesiol. 1977;46(4):252-9. · doi:10.1097/00000542-197704000-00005
[28] Rampil IJ. A primer for EEG signal processing in anesthesia. Anesthesiol. 1998;89(4):980-1002. · doi:10.1097/00000542-199810000-00023
[29] Voss LJ, Sleigh JW, Barnard JP, Kirsch HE. The howling cortex: seizures and general anesthetic drugs. Anesth Analg. 2008;107(5):1689-703. · doi:10.1213/ane.0b013e3181852595
[30] Vuyk J, Lim T, Engbers F, Burm A, Vletter A, Bovill J. Pharmacodynamics of alfentanil as a supplement to propofol or nitrous oxide for lower abdominal surgery in female patients. Anesthesiol. 1993;78(6):1036-45. · doi:10.1097/00000542-199306000-00005
[31] Hill AV. The possible effects of the aggregation of the molecules of haemoglobin on its dissociation curves. J Physiol. 1910;40:4-7.
[32] Eger E, Fisher DM, Dilger JP, Sonner JM, Evers A, Franks NP, Harris RA, Kendig JJ, Lieb WR, Yamakura T. Relevant concentrations of inhaled anesthetics for in vitro studies of anesthetic mechanisms. Anesthesiol. 2001;94(5):915-21. · doi:10.1097/00000542-200105000-00032
[33] Vuyk J, Lim T, Engbers F, Burm A, Vletter AA, Bovill JG. The pharmacodynamic interaction of propofol and alfentanil during lower abdominal surgery in women. Anesthesiol. 1995;83(1):8-22. · doi:10.1097/00000542-199507000-00003
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.