×

Joules and Newtonian heating effects on stagnation point flow over a stretching surface by means of genetic algorithm and Nelder-Mead method. (English) Zbl 1356.76021

Summary: Purpose{ } - The purpose of this paper is to study the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of genetic algorithm (GA). The main emphasis is to find the analytical and numerical solutions for the said mathematical model. The work undertaken is a blend of numerical and analytical studies. Effects of active parameters such as: Hartmann number, Prandtl number, Eckert number, Nusselt number, Skin friction and dimensionless fluids parameters on the flow and heat transfer characteristics have been examined by graphs and tables. Compression is also made with the existing benchmark results. { }Design/methodology/approach{ } - Analytical solutions of non-linear coupled equations are developed by optimal homotopy analysis method (OHAM). A very effective and higher order numerical scheme hybrid GA and Nelder-Mead optimization Algorithms are used for numerical investigations. { }Findings{ } - An excellent agreement with the existing results in limiting sense is noted. It is observed that the radial velocity is an increasing function of dimensionless material parameters \(\alpha_{1}\), \(\alpha_{2}\) and \(\beta\). Temperature increases by increasing the values of M, Pr, Ec and \(\gamma\). non-Newtonian parameter \(\beta\) has similar effects on skin friction coefficient and Nusselt number. The wall heat transfer rate is a decreasing function of A and ß whereas it increases by increasing conjugate parameter \(\gamma\). { }Originality/value{ } - The problem under consideration has been widely studied by many investigators due to its importance and engineering applications. But most of the studies as the authors have documented are for Newtonian or viscous fluids. But no such analysis is available in the literature which can describe the Joules heating effects on stagnation point flow of Newtonian and non-Newtonian fluids over a stretching cylinder by means of GA.

MSC:

76A05 Non-Newtonian fluids
80A20 Heat and mass transfer, heat flow (MSC2010)
Full Text: DOI

References:

[1] Abbasbandy, S. and Shivanian, E. (2011), ”Mathematical properties of h-curve in the frame work of the homotopy analysis method”, Commun. Nonlinear Sci. Numer. Simul. , Vol. 16 No. 11, pp. 4268-4275. , · Zbl 1222.65060 · doi:10.1108/HFF-04-2014-0103
[2] Abbas, I.A. , El-Amin, M.F. and Salama, A. (2009a), ”Effect of thermal dispersion on free convection in a fluid saturated porous medium”, Int. J. of Heat and Fluid Flow , Vol. 30 No. 2, pp. 229-236. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[3] Abbas, I.A. , El-Amin, M.F. and Salama, A. (2009b), ”Effect of thermal dispersion on free convection in a fluid saturated porous medium”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 30 No. 2, pp. 229-236. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[4] Abu-Nada, E. (2009), ”Effects of variable viscosity and thermal conductivity of Al_{2}O_{3}-water nanofluid on heat transfer enhancement in natural convection”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 30 No. 4, pp. 679-690. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[5] Abu-Nada, E. and Oztop, H.F. (2009), ”Effects of inclination angle on natural convection in enclosures filled with Cu-water nanofluid”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 30 No. 4, pp. 669-678. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[6] Bachok, N. , Ishak, A. and Pop, I. (2010), ”Melting heat transfer in boundary layer stagnation-point flow towards a stretching/shrinking sheet”, Phys. Lett. A. , Vol. 374 No. 40, pp. 4075-4079. , · Zbl 1238.76018 · doi:10.1108/HFF-04-2014-0103
[7] Chen, C.K. , Hung, C.I. and Zong-Yi, L. (2002), ”Double side approach method to obtain solutions for transient nonlinear heat conduction using genetic algorithms”, Appl. Math. and Comput , Vol. 133 Nos 2/3, pp. 431-444. , · Zbl 1024.65114 · doi:10.1108/HFF-04-2014-0103
[8] Cole, J.D. (1968), Perturbation Methods in Applied Mathematics , Blaisdell Publishing Company, Waltham, MA. · Zbl 0162.12602
[9] Dare, A.A. and Petinrin, M.O. (2010), ”Modelling of natural convection along isothermal plates and in channels using diffusion velocity method”, Maejo Int. J. Sci. Technol , Vol. 4 No. 1, pp. 43-52. · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[10] Ellahi, R. (2009), ”Effects of the slip boundary condition on non-Newtonian flows in a channel”, Communication in Nonlinear Science and Numerical Simulations , Vol. 14 No. 4, pp. 1377-1384. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[11] Ellahi, R. (2010), ”Exact solutions of flows of an Oldroyd 8-constant fluid with nonlinear slip conditions”, Zeitschrift Fur Naturforschung A , Vol. 65a , pp. 1081-1086.
[12] Ellahi, R. (2012), ”A study on the convergence of series solution of non-Newtonian third grade fluid with variable viscosity: by means of homotopy analysis method”, Advances in Mathematical Physics , pp. 1-11. · Zbl 1329.76011
[13] Ellahi, R. (2013), ”The effects of MHD and temperature dependent viscosity on the flow of non-Newtonian nanofluid in a pipe: analytical solutions”, Applied Mathematical Modeling , Vol. 37 No. 3, pp. 1451-1457. , · Zbl 1351.76306 · doi:10.1108/HFF-04-2014-0103
[14] Ellahi, R. (2014), ”The thermodynamics, stability, applications and techniques of differential type: a review”, Reviews in Theoretical Science , Vol. 2 No. 2, pp. 116-123. · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[15] Ellahi, R. and Hameed, M. (2012), ”Numerical analysis of steady flows with heat transfer, MHD and nonlinear slip effects”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 22 No. 1, pp. 24-38. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[16] Ellahi, R. , Raza, M. and Vafai, K. (2012), ”Series solutions of non-Newtonian nanofluids with Reynolds’ model and Vogel’s model by means of the homotopy analysis method”, Mathematical and Computer Modelling , Vol. 55 Nos 7-8, pp. 1876-1891. , · Zbl 1255.76008 · doi:10.1108/HFF-04-2014-0103
[17] Ellahi, R. , Bhatti, M.M. , Riaz, A. and Sheikholeslami, M. (2014), ”The effects of magnetohydrodynamics on peristaltic flow of jeffrey fluid in a rectangular duct through a porous medium”, Journal of Porous Media , Vol. 17 No. 2, pp. 143-157. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[18] Epstein, M. and Cho, D.H. (1976), ”Melting heat transfer in steady laminar flow over a flat plate”, J. Heat transfer , Vol. 98 No. 3, pp. 531-533. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[19] Fetecau, C. and Fetecau, C. (2004), ”Analytical solutions for non-Newtonian fluid flows in pipe like domains”, Int. J. Non-Linear Mech , Vol. 39 No. 2, pp. 225-231. , · Zbl 1287.76036 · doi:10.1108/HFF-04-2014-0103
[20] Fosdick, R.L. and Rajagopal, K.R. (1980), ”Thermodynamics and stability of fluids of third grade”, Proc. Roy. Soc. London, A , Vol. 339, pp. 351-377. , · Zbl 0441.76002 · doi:10.1108/HFF-04-2014-0103
[21] Fotukian, S.M. and Nasr Esfahany, M.(2010), Experimental investigation of turbulent convective heat transfer of dilute {\(\gamma\)}-Al_{2}O_{3}/water nanofluid inside a circular tube”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 31 No. 4, pp. 606-612. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[22] Kumar, R. , Abbas, I.A. and Sharma, V. (2013), ”A numerical study of free convection heat and mass transfer in a Rivlin-Ericksen viscoelastic flow past an impulsively started vertical plate with variable temperature and concentration”, Int. J. of Heat and Fluid Flow , Vol. 44, pp. 258-264. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[23] Liao, S.J. (1999), ”An explicit, totally analytic approximate solution for Blasius’ viscous flow problems”, Int. J. Non-Linear Mech , Vol. 34 No. 4, pp. 759-778. , · Zbl 1342.74180 · doi:10.1108/HFF-04-2014-0103
[24] Liao, S.J. (2003), Beyond Perturbation: Introduction to Homotopy Analysis Method , Chapman and Hall, CRC Press, Boca Raton, FL.
[25] Marinca, V. and Herisanu, N. (2008), ”Application of optimal homotopy asymptotic method for solving nonlinear equations arising in heat transfer”, Int. Commun. in Heat and Mass Trans , Vol. 35 No. 6, pp. 710-715. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[26] Marinca, V. and Hersanu, N. (2009), ”An optimal homotopy asymptotic method applied to the steady flow of a fourth-grade fluid past a porous plate”, Appl. Math. Lett. , Vol. 22 No. 2, pp. 245-251. , · Zbl 1163.76318 · doi:10.1108/HFF-04-2014-0103
[27] Mastorakis, N.E. (1996), ”Solving differential equations via genetic algorithms”, Proceedings of the Circuits, Systems and Computers. 96 (CSC’96), July 15-17, Piraeus, pp. 733-737.
[28] Mastorakis, N.E. (2005), ”Numerical solution of non-linear ordinary differential equations via collocation method (Finite Elements) and genetic algorithms”, Proceedings of the 6th WSEAS Int. Confer. on Evolu. Comput, June 16-18, Lisbon, pp. 36-42.
[29] Mastorakis, N.E. (2006), ”Unstable ordinary differential equations: solution via genetic algorithms and the method of Nelder-Mead”, Proceedings of the 6th WSEAS Int. Conf. on Systems Theory & Scientific Computation, Elounda, pp. 1-6.
[30] Noie, S.H. , Kahani, M. and Nowee, S.M. (2009), ”Heat transfer enhancement using Al_{2}O_{3}/water nanofluid in a two-phase closed thermosyphon”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 30 No. 4, pp. 700-705. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[31] Noreen, S.A. and Nadeem, S. (2012), ”Peristaltic flow of a jeffrey fluid with reynolds model of viscosity”, Int. J. for Numerical Methods for Heat and Fluid Flow , Vol. 22 No. 4, pp. 458-472. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[32] Rashidi, M.M. , Hayat, T. , Keimanesh, M. and Hendi, A.A. (2013), ”New analytical method for the study of natural convection flow of a non-Newtonian fluid”, International Journal of Numerical Methods for Heat & Fluid Flow , Vol. 23 No. 3, pp. 436-450. , · Zbl 1356.76253 · doi:10.1108/HFF-04-2014-0103
[33] Sahoo, B. (2009), ”Heimenz flow and heat transfer of a third grade fluid”, Commun. Nonlinear Sci. and Numer. Simul , Vol. 14 No. 3, pp. 811-826. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[34] Sahoo, B. and Do, Y. (2010), ”Effects of slip on sheet driven flow and heat transfer of a third-grade fluid past a stretching sheet”, Int. Commun. Heat and Mass Trans , Vol. 37 No. 8, pp. 1064-1071. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[35] Salama, A. , Abbas, I.A. , El-Amin, M.F. and Sun, S. (2013), ”Comparison study between the effects of different terms contributing to viscous dissipation in saturated porous media”, Int. J. of Therm. Sci , Vol. 64, pp. 195-203. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[36] Sheikholeslami, M. , Ellahi, R. , Ashorynejad, H.R. , Domairry, G. and Hayat, T. (2014), ”Effects of heat transfer in flow of nanofluids over a permeable stretching wall in a porous medium”, Journal of Computational and Theoretical Nanoscience , Vol. 11 No. 2, pp. 486-496. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[37] Tan, W.C. and Masuoka, T. (2005), ”Stokes’ first problem for a second grade fluid in a porous half space with heated boundary”, Int. J. Non-Linear Mech , Vol. 40 No. 4, pp. 512-522. , · Zbl 1349.76830 · doi:10.1108/HFF-04-2014-0103
[38] Turkyilmazoglu, M. (2011), ”Numerical and analytical solutions for the flow and heat transfer near the equator of an MHD boundary layer over a porous rotating sphere”, Int. J. of Therm. Sci. , Vol. 50 No. 5, pp. 831-842. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
[39] Turkyilmazoglu, M. (2012), ”Solution of the thomas-fermi equation with a convergent approach”, Commun. in Nonlinear Sci. and Numer. Simul , Vol. 17 No. 5, pp. 4097-4103. , · Zbl 1316.34020 · doi:10.1108/HFF-04-2014-0103
[40] Zeeshan, A. and Ellahi, R. (2013), ”Series solutions of nonlinear partial differential equations with slip boundary conditions for non-Newtonian MHD fluid in porous space”, Journal of Applied Mathematics & Information Sciences , Vol. 7 No. 1, pp. 253-261.
[41] Zeeshan, A. , Baig, M. , Ellahi, R. and Hayat, T. (2014), ”Flow of viscous nanofluid between the concentric cylinders”, Journal of Computational and Theoretical Nanoscience , Vol. 11 No. 3, pp. 646-654. , · Zbl 1356.76021 · doi:10.1108/HFF-04-2014-0103
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.