×

Local classical solutions of compressible Navier-Stokes-Smoluchowski equations with vacuum. (English) Zbl 1356.35160

Summary: This paper is concerned with the Cauchy problem for compressible Navier-Stokes-Smoluchowski equations with vacuum in \(\mathbb{R}^3\). We prove both existence and uniqueness of the local strong solution, and then obtain a local classical solution by deriving the smoothing effect of the strong solution for \(t>0\).

MSC:

35Q30 Navier-Stokes equations
76N10 Existence, uniqueness, and regularity theory for compressible fluids and gas dynamics
46E35 Sobolev spaces and other spaces of “smooth” functions, embedding theorems, trace theorems
35D35 Strong solutions to PDEs
76T20 Suspensions
Full Text: DOI

References:

[1] C. Baranger, A modeling of biospray for the upper airways, CEMRACS 2004 mathematics and applications to biology and medicine,, ESAIM Proc, 14, 41 (2005) · Zbl 1075.92031
[2] J. Ballew, Low Mach number limits to the Navier-Stokes-Smoluchowski system. Hyperbolic Problems: Theory, Numerics, Applications,, AIMS Series on Applied Mathematics, 8, 301 (2014)
[3] J. Ballew, <em>Mathematical Topics in Fluid-Particle Interaction</em>,, Ph.D thesis (2014)
[4] J. Ballew, Weakly dissipative solutions and weak strong uniqueness for the Navier Stokes Smoluchowski system,, Nonlinear Analysis Series A: Theory, 91, 1 (2013) · Zbl 1284.35303 · doi:10.1016/j.na.2013.06.002
[5] J. Ballew, Viscous and inviscid models in fluid-particle interaction,, Communications in Information Systems, 13, 45 (2013) · Zbl 1305.35015 · doi:10.4310/CIS.2013.v13.n1.a2
[6] S. Berres, Strongly degenerate parabolic hyperbolic systems modeling polydisperse sedimentation with compression,, SIAM J. Appl. Math., 64, 41 (2003) · Zbl 1047.35071 · doi:10.1137/S0036139902408163
[7] H. J. Choe, Strong solutions of the Navier-Stokes equations for isentropic compressible fluids,, J. Diff. Equ., 190, 504 (2003) · Zbl 1022.35037 · doi:10.1016/S0022-0396(03)00015-9
[8] H. J. Choe, Global existence of the radially symmetric solutions of the Navier Stokes equations for the isentropic compressible fluids,, Math. Methods Appl. Sci., 28, 1 (2005) · Zbl 1161.35302 · doi:10.1002/mma.545
[9] J. A. Carrillo, Stability and asymptotic analysis of a fluid-particle interaction model,, Commun. Partial Differ. Equ., 31, 1349 (2006) · Zbl 1105.35088 · doi:10.1080/03605300500394389
[10] J. A. Carrillo, On the dynamics of a fluid-particle interaction model: The bubbling regime,, Nonlinear Anal., 74, 2778 (2011) · Zbl 1214.35068 · doi:10.1016/j.na.2010.12.031
[11] Y. Cho, On classical solutions of the compressible Navier-Stokes equations with nonnegative initial densities,, Manuscripta Math., 120, 91 (2006) · Zbl 1091.35056 · doi:10.1007/s00229-006-0637-y
[12] Y. Cho, Unique solvability of the initial boundary value problems for compressible viscous fluids,, J. Math. Pures Appl., 83, 243 (2004) · Zbl 1080.35066 · doi:10.1016/j.matpur.2003.11.004
[13] S. J. Ding, A free boundary problem for compressible hydrodynamic flow of liquid crystals in one dimension,, J. Diff. Equ., 255, 3848 (2013) · Zbl 1452.76019 · doi:10.1016/j.jde.2013.07.039
[14] S. J. Ding, Global spherically symmetric classical solution to compressible Navier Stokes equations with large initial data and vacuum,, SIAM J. Math. Anal., 44, 1257 (2012) · Zbl 1388.76326 · doi:10.1137/110836663
[15] D. Y. Fang, Global classical large solutions to a 1D fluid-particle interaction model: The bubbling regime,, J. Math. Phys., 53 (2012) · Zbl 1274.82042 · doi:10.1063/1.3693979
[16] E. Feireisl, <em>Dynamics of Viscous Compressible Fluids,</em>, Oxford: Oxford University Press (2004) · Zbl 1080.76001
[17] E. Feireisl, On the existence of globally defined weak solutions to the Navier-Stokes equations of compressible isentropic fluids,, J. Math. Fluid Mech., 3, 358 (2001) · Zbl 0997.35043 · doi:10.1007/PL00000976
[18] E. Feireisl, Large-time behavior of solutions to the Navier-Stokes equations of compressible flow,, Arch. Rational Mech. Anal., 150, 77 (1999) · Zbl 0946.35058 · doi:10.1007/s002050050181
[19] G. P. Galdi, <em>An Introduction to the Mathematical Theory of the Navier-Stokes Equations</em>,, Second edition. Springer Monographs in Mathematics. Springer (2011) · Zbl 1245.35002 · doi:10.1007/978-0-387-09620-9
[20] J. R. Huang, Compressible hydrodynamic flow of nematic liquid crystals with vacuum,, J. Diff. Equ., 258, 1653 (2015) · Zbl 1446.76070 · doi:10.1016/j.jde.2014.11.008
[21] T. Huang, Blow Up Criterion for Compressible Nematic Liquid Crystal Flows in Dimension Three,, Arch. Rational Mech. Anal., 204, 285 (2012) · Zbl 1314.76010 · doi:10.1007/s00205-011-0476-1
[22] T. Huang, Strong solutions of the compressible nematic liquid crystal flow,, J. Diff. Equ., 252, 2222 (2012) · Zbl 1233.35168 · doi:10.1016/j.jde.2011.07.036
[23] X. D. Huang, Global Well-Posedness of Classical Solutions to the Cauchy problem of Two-Dimensional Baratropic Compressible Navier-Stokes System with Vacuum and Large Initial Data, preprint,, <a href=
[24] X. D. Huang, Global well-posedness of classical solutions with large oscillations and vacuum to the three-dimensional isentropic compressible Navier-Stokes equations,, Comm. Pure. Appl. Math., 65, 549 (2012) · Zbl 1234.35181 · doi:10.1002/cpa.21382
[25] X. F. Hou, Global classical solution to 3D isentropic compressible Navier-Stokes equations with large initial data and vacuum, preprint,, <a href=
[26] X. P. Hu, Global solution to the three-dimensional compressible flow of liquid crystals,, SIAM J. Math. Anal., 45, 2678 (2013) · Zbl 1294.76051 · doi:10.1137/120898814
[27] J. Li, Global well-posedness with large oscillations and vacuum to the three-dimensional equations of compressible nematic liquid crystal flows,, preprint
[28] P. L. Lions, <em>Mathematical Topics in Fluid Dynamics, Vol. 2, Compressible Models</em>,, Oxford University Press (1998) · Zbl 0908.76004
[29] S. Ma, Classical solutions for the compressible liquid crystal flows with nonnegative initial densities,, J. Math. Anal. Appl., 397, 595 (2013) · Zbl 1256.35088 · doi:10.1016/j.jmaa.2012.08.010
[30] Y. K. Song, Strong solutions for a 1D fluid-particle interaction non-newtonian model: The bubbling regime,, J. Math. Phys., 54 (2013) · Zbl 1302.76012 · doi:10.1063/1.4820446
[31] I. Vinkovic, Large eddy simulation of droplet dispersion for inhomogeneous turbulent wall flow,, International Journal of Multiphase Flow, 32, 344 (2006) · Zbl 1135.76570 · doi:10.1016/j.ijmultiphaseflow.2005.10.005
[32] F. A. Williams, <em>Combustion Theory</em>,, 2nd ed (1985)
[33] F. A. Williams, Spray combustion and atomization,, Phys. Fluids, 1, 541 (1958) · Zbl 0086.41102 · doi:10.1063/1.1724379
[34] H. Y. Wen, Blow-up criterions of strong solutions to 3D compressible Navier-Stokes equations with vacuum,, Advances in Mathematics, 248, 534 (2013) · Zbl 1283.35070 · doi:10.1016/j.aim.2013.07.018
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.