×

Robust MPC via min-max differential inequalities. (English) Zbl 1355.93057

Summary: This paper is concerned with tube-based Model Predictive Control (MPC) for both linear and nonlinear, input-affine continuous-time dynamic systems that are affected by time-varying disturbances. We derive a min-max differential inequality describing the support function of positive robust forward invariant tubes, which can be used to construct a variety of tube-based model predictive controllers. These constructions are conservative, but computationally tractable and their complexity scales linearly with the length of the prediction horizon. In contrast to many existing tube-based MPC implementations, the proposed framework does not involve discretizing the control policy and, therefore, the conservatism of the predicted tube depends solely on the accuracy of the set parameterization. The proposed approach is then used to construct a robust MPC scheme based on tubes with ellipsoidal cross-sections. This ellipsoidal MPC scheme is based on solving an optimal control problem under linear matrix inequality constraints. We illustrate these results with the numerical case study of a spring-mass-damper system.

MSC:

93B35 Sensitivity (robustness)
93B40 Computational methods in systems theory (MSC2010)
93C15 Control/observation systems governed by ordinary differential equations
93C10 Nonlinear systems in control theory

References:

[1] Aubin, J.-P., Viability theory, (Systems & control: Foundations & applications (1991), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0755.93003
[2] Azagra, D.; Ferrera, J., Every closed convex set is the set of minimizers of some \(C^\infty \)-smooth function, Proceedings of the American Mathematical Society, 130, 12, 3687-3692 (2002) · Zbl 1028.49003
[3] Bertsekas, D. P., Dynamic programming and optimal control. Vol. I (2005), Athena Scientific: Athena Scientific Belmont, MA · Zbl 1125.90056
[4] Blanchini, F., Set invariance in control, Automatica, 35, 11, 1747-1767 (1999) · Zbl 0935.93005
[5] Blanchini, F.; Miani, S., Set-theoretic methods in control, (Systems & control: Foundations & applications (2008), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 1140.93001
[6] Boyd, D.; El Ghaoui, L.; Feron, E.; Balakishnan, V., (Linear matrix inequalities in sysem and control theory. Linear matrix inequalities in sysem and control theory, Studies in applied and numerical mathematics (1994), SIAM: SIAM Philadelphia, PA) · Zbl 0816.93004
[7] Cannon, M.; Buerger, J.; Kouvaritakis, B.; Raković, S., Robust tubes in nonlinear model predictive control, IEEE Transactions on Automatic Control, 56, 8, 1942-1947 (2011) · Zbl 1368.93338
[9] Diehl, M.; Björnberg, J., Robust dynamic programming for min-max model predictive control of constrained uncertain systems, IEEE Transactions on Automatic Control, 49, 12, 2253-2257 (2004) · Zbl 1365.93131
[10] Diehl, M.; Ferreau, H. J.; Haverbeke, N., Efficient numerical methods for nonlinear MPC and moving horizon estimation, (Nonlinear model predictive control: Towards new challenging applications. Nonlinear model predictive control: Towards new challenging applications, Lecture notes in control and information sciences, Vol. 384 (2009), Springer: Springer Heidelberg), 391-417 · Zbl 1195.93038
[11] Engell, S., Online optimizing control: The link between plant economics and process control, (10th international symposium on process systems engineering: Part A. 10th international symposium on process systems engineering: Part A, Computer aided chemical engineering, Vol. 27 (2009), Elsevier), 79-86
[13] Fiacco, A. V., (Introduction to sensitivity and stability analysis in nonlinear programming. Introduction to sensitivity and stability analysis in nonlinear programming, Mathematics in science and engineering, Vol. 165 (1983), Academic Press, Inc.: Academic Press, Inc. Orlando, FL) · Zbl 0543.90075
[14] Goulart, P. J.; Kerrigan, E. C., Output feedback receding horizon control of constrained systems, International Journal of Control, 80, 1, 8-20 (2007) · Zbl 1115.93033
[15] Goulart, P. J.; Kerrigan, E. C.; Maciejowski, J. M., Optimization over state feedback policies for robust control with constraints, Automatica, 42, 4, 523-533 (2006) · Zbl 1102.93017
[16] Houska, B.; Chachuat, B., Branch-and-lift algorithm for deterministic global optimization in nonlinear optimal control, Journal of Optimization Theory and Applications, 162, 1, 208-248 (2014) · Zbl 1307.49034
[17] Houska, B.; Ferreau, H. J.; Diehl, M., An auto-generated real-time iteration algorithm for nonlinear MPC in the microsecond range, Automatica, 47, 10, 2279-2285 (2011) · Zbl 1227.65054
[18] Houska, B.; Logist, F.; Van Impe, J.; Diehl, M., Robust optimization of nonlinear dynamic systems with application to a jacketed tubular reactor, Journal of Process Control, 22, 6, 1152-1160 (2012)
[19] Houska, B.; Mohammadi, A.; Diehl, M., A short note on constrained linear control systems with multiplicative ellipsoidal uncertainty, IEEE Transactions on Automatic Control, 62, 4 (2017), (in press)
[20] Kothare, M. V.; Balakrishnan, V.; Manfred, M., Robust constrained model predictive control using linear matrix inequalities, Automatica, 32, 10, 1361-1379 (1996) · Zbl 0897.93023
[21] Kurzhanski, A. B.; Filippova, T. F., On the theory of trajectory tubes—a mathematical formalism for uncertain dynamics, viability and control, (Advances in nonlinear dynamics and control: a report from Russia. Advances in nonlinear dynamics and control: a report from Russia, Progr. Systems Control Theory, Vol. 17 (1993), Birkhäuser Boston: Birkhäuser Boston Boston, MA), 122-188 · Zbl 0912.93040
[22] Kurzhanski, A. B.; Vályi, I., Ellipsoidal calculus for estimation and control, (Systems & control: Foundations & applications (1997), Birkhäuser Boston, Inc.: Birkhäuser Boston, Inc. Boston, MA) · Zbl 0865.93001
[23] Lakshmikantham, V.; Leela, S., (Differential and integral inequalities: Theory and applications. Vol. I: Ordinary differential equations. Differential and integral inequalities: Theory and applications. Vol. I: Ordinary differential equations, Mathematics in science and engineering (1969), Academic Press: Academic Press New York, London), 55-I · Zbl 0177.12403
[24] Langson, W.; Chryssochoos, I.; V Raković, S.; Mayne, D. Q., Robust model predictive control using tubes, Automatica, 40, 1, 125-133 (2004) · Zbl 1036.93019
[25] Lee, Y. I.; Kouvaritakis, B.; Cannon, M., Constrained receding horizon predictive control for nonlinear systems, Automatica, 38, 12, 2093-2102 (2002) · Zbl 1017.93043
[26] Li, D.; Xi, Y., The feedback robust MPC for LPV systems with bounded rates of parameter changes, IEEE Transactions on Automatic Control, 55, 2, 503-507 (2010) · Zbl 1368.93174
[27] Mayne, D. Q.; Raković, S. V.; Findeisen, R.; Allgöwer, F., Robust output feedback model predictive control of constrained linear systems: time varying case, Automatica, 45, 9, 2082-2087 (2009) · Zbl 1175.93072
[28] Pannocchia, G.; Rawlings, J. B.; Wright, S. J., Conditions under which suboptimal nonlinear MPC is inherently robust, Systems & Control Letters, 60, 9, 747-755 (2011) · Zbl 1226.93110
[29] Raković, S. V., Set theoretic methods in model predictive control, (Nonlinear model predictive control: Towards new challenging applications. Nonlinear model predictive control: Towards new challenging applications, Lecture notes in control and information sciences, Vol. 384 (2009), Springer: Springer Heidelberg), 41-54 · Zbl 1195.93046
[30] Raković, S. V.; Kerrigan, E. C.; Kouramas, K. I.; Mayne, D. Q., Invariant approximation of the minimal robust positively invariant set, IEEE Transactions on Automatic Control, 50, 3, 406-410 (2005) · Zbl 1365.93122
[31] Raković, S. V.; Kouvaritakis, B.; Cannon, M.; Panos, C., Fully parameterized tube model predictive control, International Journal of Robust and Nonlinear Control, 22, 12, 1330-1361 (2012) · Zbl 1286.93066
[32] Raković, S. V.; Kouvaritakis, B.; Cannon, M.; Panos, C.; Findeisen, R., Parameterized tube model predictive control, IEEE Transactions on Automatic Control, 57, 11, 2746-2761 (2012) · Zbl 1369.93240
[34] Rawlings, J. B.; Mayne, D. Q., Model predictive control: Theory and design (2015), Nob Hill Publishing: Nob Hill Publishing Madison (WI)
[36] Sacksteder, R., On hypersurfaces with no negative sectional curvatures, American Journal of Mathematics, 82, 609-630 (1960) · Zbl 0194.22701
[37] Scott, J. K.; Barton, P. I., Bounds on the reachable sets of nonlinear control systems, Automatica, 49, 1, 93-100 (2013) · Zbl 1257.93015
[38] Van Parys, B. P.G.; Goulart, P. J.; Morari, M., Infinite horizon performance bounds for uncertain constrained systems, IEEE Transactions on Automatic Control, 58, 11, 2803-2817 (2013) · Zbl 1369.49033
[39] Villanueva, M. E., Set-Theoretic methods for analysis, estimation and control of nonlinear systems (2016), Imperial College London, (Ph.D. thesis)
[40] Villanueva, M. E.; Houska, B.; Chachuat, B., Unified framework for the propagation of continuous-time enclosures for parametric nonlinear ODEs, Journal of Global Optimization, 62, 3, 575-613 (2015) · Zbl 1320.49013
[41] Walter, W., Differential and integral inequalities (1970), Springer-Verlag: Springer-Verlag New York, Berlin, Translated from the German by Lisa Rosenblatt and Lawrence Shampine. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 55 · Zbl 0252.35005
[42] Yu, S.; Maier, C.; Chen, H.; Allgöwer, F., Tube mpc scheme based on robust control invariant set with application to Lipschitz nonlinear systems, Systems & Control Letters, 62, 2, 194-200 (2013) · Zbl 1259.93048
[43] Yu, S.; Reble, M.; Chen, H.; Allgöwer, F., Inherent robustness properties of quasi-infinite horizon nonlinear model predictive control, Automatica, 50, 9, 2269-2280 (2014) · Zbl 1297.93077
[44] Zeilinger, M. N.; Raimondo, D. M.; Domahidi, A.; Morari, M.; Jones, C. N., On real-time robust model predictive control, Automatica, 50, 3, 683-694 (2014) · Zbl 1298.93160
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.