×

Topological patterns in two-dimensional gel electrophoresis of DNA knots. (English) Zbl 1355.92082

Summary: Gel electrophoresis is a powerful experimental method to probe the topology of DNA and other biopolymers. While there is a large body of experimental work which allows us to accurately separate different topoisomers of a molecule, a full theoretical understanding of these experiments has not yet been achieved. Here we show that the mobility of DNA knots depends crucially and subtly on the physical properties of the gel, and in particular on the presence of dangling ends. The topological interactions between these and DNA molecules can be described in terms of an “entanglement number”, and yield a non-monotonic mobility at moderate fields. Consequently, in two-dimensional electrophoresis, gel bands display a characteristic arc pattern; this turns into a straight line when the density of dangling ends vanishes. We also provide a novel framework to accurately predict the shape of such arcs as a function of molecule length and topological complexity, which may be used to inform future experiments.

MSC:

92D20 Protein sequences, DNA sequences
57M25 Knots and links in the \(3\)-sphere (MSC2010)

References:

[1] Calladine CR Drew H Luisi FB Travers AA (1997) Understanding DNA: The Molecule and How It Works (Elsevier, New York)
[2] Bates A Maxwell A (2005) DNA Topology (Oxford Univ Press, New York)
[3] DOI: 10.1093/nar/30.3.656 · doi:10.1093/nar/30.3.656
[4] Cebrián, Electrophoretic mobility of supercoiled, catenated and knotted DNA molecules, Nucleic Acids Res 43 (4) pp e24– (2014) · doi:10.1093/nar/gku1255
[5] DOI: 10.1038/384122a0 · doi:10.1038/384122a0
[6] DOI: 10.1073/pnas.0409323102 · doi:10.1073/pnas.0409323102
[7] de Gennes PG (1979) Scaling Concepts in Polymer Physics (Cornell Univ Press, Ithaca, NY)
[8] DOI: 10.1103/PhysRevLett.59.1946 · doi:10.1103/PhysRevLett.59.1946
[9] DOI: 10.1103/PhysRevLett.62.2877 · doi:10.1103/PhysRevLett.62.2877
[10] DOI: 10.1002/elps.1150140155 · doi:10.1002/elps.1150140155
[11] Barkema, Electrophoresis of charged polymers: Simulation and scaling in a lattice model of reptation, Phys Rev E Stat Phys Plasmas Fluids Relat Interdiscip Topics 49 (6) pp 5303– (1994)
[12] DOI: 10.1086/110330 · doi:10.1086/110330
[13] DOI: 10.1006/jmbi.1998.1696 · doi:10.1006/jmbi.1998.1696
[14] Weber, Sedimentation of macroscopic rigid knots and its relation to gel electrophoretic mobility of DNA knots, Sci Rep 3 pp 1091– (2013) · doi:10.1038/srep01091
[15] DOI: 10.1103/PhysRevE.87.012728 · doi:10.1103/PhysRevE.87.012728
[16] DOI: 10.1529/biophysj.105.070128 · doi:10.1529/biophysj.105.070128
[17] DOI: 10.1038/384142a0 · Zbl 1369.57010 · doi:10.1038/384142a0
[18] DOI: 10.1093/nar/29.13.e67 · doi:10.1093/nar/29.13.e67
[19] DOI: 10.1073/pnas.032095099 · doi:10.1073/pnas.032095099
[20] DOI: 10.1039/C4SM02324B · doi:10.1039/C4SM02324B
[21] DOI: 10.1093/nar/4.5.1465 · doi:10.1093/nar/4.5.1465
[22] DOI: 10.1073/pnas.84.12.4054 · doi:10.1073/pnas.84.12.4054
[23] DOI: 10.1093/nar/18.3.569 · doi:10.1093/nar/18.3.569
[24] DOI: 10.1002/1522-2683(200208)23:16<2549::AID-ELPS2549>3.0.CO;2-Q · doi:10.1002/1522-2683(200208)23:16<2549::AID-ELPS2549>3.0.CO;2-Q
[25] DOI: 10.1081/SS-120021616 · doi:10.1081/SS-120021616
[26] DOI: 10.1073/pnas.0700137104 · doi:10.1073/pnas.0700137104
[27] DOI: 10.1016/j.chroma.2008.11.090 · doi:10.1016/j.chroma.2008.11.090
[28] Adams CC (1994) The Knot Book: An Elementary Introduction to the Mathematical Theory of Knots (Freeman, New York)
[29] DOI: 10.1186/1472-6750-7-94 · doi:10.1186/1472-6750-7-94
[30] DOI: 10.1021/ma071354e · doi:10.1021/ma071354e
[31] DOI: 10.1103/PhysRevE.76.040903 · doi:10.1103/PhysRevE.76.040903
[32] DOI: 10.1103/RevModPhys.82.2903 · doi:10.1103/RevModPhys.82.2903
[33] DOI: 10.1021/mz500060c · doi:10.1021/mz500060c
[34] DOI: 10.1039/C4SM00619D · doi:10.1039/C4SM00619D
[35] DOI: 10.1088/0953-8984/18/14/S02 · doi:10.1088/0953-8984/18/14/S02
[36] DOI: 10.1002/elps.1150180111 · doi:10.1002/elps.1150180111
[37] Rahong, Ultrafast and wide range analysis of DNA molecules using rigid network structure of solid nanowires, Sci Rep 4 pp 5252– (2014) · doi:10.1038/srep05252
[38] DOI: 10.1063/1.458541 · doi:10.1063/1.458541
[39] DOI: 10.1073/pnas.90.11.5307 · doi:10.1073/pnas.90.11.5307
[40] DOI: 10.1002/masy.200651011 · doi:10.1002/masy.200651011
[41] DOI: 10.1016/0144-8617(94)90188-0 · doi:10.1016/0144-8617(94)90188-0
[42] DOI: 10.1103/PhysRevLett.105.158101 · doi:10.1103/PhysRevLett.105.158101
[43] Kusner R Sullivan J (1994) Möbius energies for knots and links, surfaces and submanifolds. Geometric Topology: Proceedings of the 1993 Georgia International Topology Conference, ed Kazez WH (Am Math Soc, Cambridge, MA), pp 570–604 · Zbl 0888.57012
[44] DOI: 10.1529/biophysj.104.056515 · doi:10.1529/biophysj.104.056515
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.