×

Phase boundaries in algebraic conformal QFT. (English) Zbl 1355.81101

The presence of boundaries in quantum theory is ubiquitous and central to many parts of the theory like, e.g., in condensed matter or field theory. A precise mathematical description of a boundary and its effects to the theory is a fundamental question in mathematical physics. E.g., Boundaries have been studied intensively in the setting of Euclidean quantum field theory in several articles by Fuchs et al. Due to the lack of a Wick rotation in the presence of a boundary, the theory has to be developed on its own in the context of relativistic quantum field theory.
The article under review describes in detail and with full mathematical precision boundaries and its effects in the frame of two-dimensional conformal quantum field theories. In this context, the boundary is a timelike plane of co-dimension 1 in Minkowski space (typically, the \(x=0\) plane). In particular, the authors consider so-called phase boundaries which share the same stress-energy tensor on both sides, while the bulk field content may be different on each side. Using the language of algebraic quantum field theory they focus on how the presence of boundaries intertwines with the principle of Einstein’s causality. Mathematically, the authors base their analysis on modular C*-tensor categories based on the Doplicher-Haag-Roberts category of chiral superselection sectors. Moreover, the article contains an analysis of defects and a classification of boundary conditions in terms of central projections associated with non-local extensions of the local theory. The article contains a long and informative introduction which also relates the results presented with alternative approaches.

MSC:

81T05 Axiomatic quantum field theory; operator algebras
46L60 Applications of selfadjoint operator algebras to physics
81T40 Two-dimensional field theories, conformal field theories, etc. in quantum mechanics

References:

[1] Bartels, A., Douglas, C.L., Henriques, A.: Conformal nets III: fusion of defects. arXiv:1310.8263v2 · Zbl 1430.81070
[2] Bischoff M., Kawahigashi Y., Longo R.: Characterization of 2D rational local conformal nets and its boundary conditions: the maximal case. Documenta Math. 20, 1137-1184 (2015) · Zbl 1337.81103
[3] Bischoff, M., Kawahigashi,Y., Longo, R., Rehren, K.-H.: Tensor categories and endomorphisms of von Neumann algebras. Springer Briefs in Mathematical Physics, vol. 3 (2015). arXiv:1407.4793v3 · Zbl 1328.46047
[4] Borchers H.-J.: On revolutionizing QFT with modular theory. J. Math. Phys. 41, 3604-3673 (2000) · Zbl 1031.81547 · doi:10.1063/1.533323
[5] Böckenhauer J., Evans D., Kawahigashi Y.: On α-induction, chiral generators and modular invariants for subfactors. Commun. Math. Phys. 208, 429-487 (1999) · Zbl 0948.46048 · doi:10.1007/s002200050765
[6] Buchholz D., Mack G., Todorov I.: The current algebra on the circle as a germ of local field theories. Nucl. Phys. B (Proc. Suppl.) 5B, 20-56 (1988) · Zbl 0958.22500 · doi:10.1016/0920-5632(88)90367-2
[7] Carpi S., Kawahigashi Y., Longo R.: How to add a boundary condition. Commun. Math. Phys. 322, 149-166 (2013) · Zbl 1270.81197 · doi:10.1007/s00220-013-1734-x
[8] Davydov, A., Kong, L., Runkel, I.: Field theories with defects and the centre functor. In: Mathematical foundations of quantum field theory and perturbative string theory, pp. 71-128, Proc. Sympos. Pure Math., vol. 83. Amer. Math. Soc., Providence (2011). arXiv:1107.0495 · Zbl 1272.57023
[9] Doplicher S., Haag R., Roberts J.E.: Local observables and particle statistics. I. Commun. Math. Phys. 23, 199-230 (1971) · doi:10.1007/BF01877742
[10] Doplicher S., Roberts J.E.: Why there is a field algebra with a compact gauge group describing the superselection structure in particle physics. Commun. Math. Phys. 131, 51-207 (1990) · Zbl 0734.46042 · doi:10.1007/BF02097680
[11] Evans D., Gannon T.: Near-group fusion categories and their doubles. Adv. Math. 255, 586-640 (2014) · Zbl 1304.18017 · doi:10.1016/j.aim.2013.12.014
[12] Evans D., Pinto P.: Subfactor realizations of modular invariants. Commun. Math. Phys. 237, 309-363 (2003) · Zbl 1042.46034 · doi:10.1007/s00220-003-0862-0
[13] Fredenhagen K., Rehren K.-H., Schroer B.: Superselection sectors with braid group statistics and exchange algebras I. Commun. Math. Phys. 125, 201-226 (1989) · Zbl 0682.46051 · doi:10.1007/BF01217906
[14] Frieler K., Rehren K.-H.: A non-Abelian square root of Abelian vertex operators. J. Math. Phys. 39, 3073-3090 (1998) · Zbl 1006.46051 · doi:10.1063/1.532240
[15] Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Kramers-Wannier duality from conformal defects. Phys. Rev. Lett. 93, 070601 (2004) · Zbl 1052.81090 · doi:10.1103/PhysRevLett.93.070601
[16] Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Correspondences of ribbon categories. Ann. Math. 199, 192-329 (2006) · Zbl 1087.18006
[17] Fröhlich J., Fuchs J., Runkel I., Schweigert C.: Duality and defects in rational conformal field theory. Nucl. Phys. B 763, 354-430 (2007) · Zbl 1116.81060 · doi:10.1016/j.nuclphysb.2006.11.017
[18] Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators I: partition functions. Nucl. Phys. B 646 [PM], 353-497 (2002) · Zbl 0999.81079
[19] Fuchs, J., Runkel, I., Schweigert, C.: TFT construction of RCFT correlators II: unoriented worldsheets. Nucl. Phys. B 678 [PM], 511-637 (2004) · Zbl 1097.81736
[20] Fuchs J., Runkel I., Schweigert C.: Boundaries, defects and Frobenius algebras. Fortschr. Phys. 51, 850-855 (2003) · Zbl 1033.81514 · doi:10.1002/prop.200310107
[21] Goddard P., Kent A., Olive D.: Unitary representations of the Virasoro and super-Virasoro algebras. Commun. Math. Phys. 103, 105-119 (1986) · Zbl 0588.17014 · doi:10.1007/BF01464283
[22] Guido D., Longo R.: The conformal spin and statistics theorem. Commun. Math. Phys. 181, 11-35 (1996) · Zbl 0858.46053 · doi:10.1007/BF02101672
[23] Izumi M.: The structure of sectors associated with Longo-Rehren inclusions II. Examples Rev. Math. Phys. 13, 603-674 (2001) · Zbl 1033.46506 · doi:10.1142/S0129055X01000818
[24] Kawahigashi Y., Longo R., Müger M.: Multi-interval subfactors and modularity of representations in conformal field theory. Commun. Math. Phys. 219, 631-669 (2001) · Zbl 1016.81031 · doi:10.1007/PL00005565
[25] Kong L., Runkel I.: Morita classes of algebras in modular tensor categories. Adv. Math. 219, 1548-1576 (2008) · Zbl 1156.18003 · doi:10.1016/j.aim.2008.07.004
[26] Kosaki H.: Extension of Jones’ theory on index to arbitrary factors. J. Funct. Anal. 66, 123-140 (1986) · Zbl 0607.46034 · doi:10.1016/0022-1236(86)90085-6
[27] Kosaki H., Longo R.: A remark on the minimal index of subfactors. J. Funct. Anal. 107, 458-470 (1992) · Zbl 0791.46040 · doi:10.1016/0022-1236(92)90118-3
[28] Longo R.: Index of subfactors and statistics of quantum fields I. Commun. Math. Phys. 126, 217-247 (1989) · Zbl 0682.46045 · doi:10.1007/BF02125124
[29] Longo R.: A duality for Hopf algebras and for subfactors. Commun. Math. Phys. 159, 133-150 (1994) · Zbl 0802.46075 · doi:10.1007/BF02100488
[30] Longo R.: Conformal subnets and intermediate subfactors. Commun. Math. Phys. 237, 7-30 (2003) · Zbl 1042.46035 · doi:10.1007/s00220-003-0814-8
[31] Longo R., Rehren K.-H.: Nets of subfactors. Rev. Math. Phys. 7, 567-597 (1995) · Zbl 0836.46055 · doi:10.1142/S0129055X95000232
[32] Longo R., Rehren K.-H.: Local fields in boundary CFT. Rev. Math. Phys. 16, 909-960 (2004) · Zbl 1078.81052 · doi:10.1142/S0129055X04002163
[33] Longo R., Rehren K.-H.: How to remove the boundary in CFT—an operator algebraic procedure. Commun. Math. Phys. 285, 1165-1182 (2009) · Zbl 1171.81421 · doi:10.1007/s00220-008-0459-8
[34] Longo R., Rehren K.-H.: Boundary quantum field theory on the interior of the Lorentz hyperboloid. Commun. Math. Phys. 311, 769-785 (2012) · Zbl 1244.81058 · doi:10.1007/s00220-011-1381-z
[35] Longo R., Roberts J.E.: A theory of dimension. K-Theory 11, 103-159 (1997) · Zbl 0874.18005 · doi:10.1023/A:1007714415067
[36] Longo R., Xu F.: Topological sectors and a dichotomy in conformal field theory. Commun. Math. Phys. 251, 321-364 (2004) · Zbl 1158.81345 · doi:10.1007/s00220-004-1063-1
[37] Rehren, K.-H.: Weak C* Hopf symmetry. In: Doebner, H.-D., et al. (eds.) Quantum Groups Symposium at “Group21”, Goslar 1996 Proceedings, pp. 62-69. Heron Press, Sofia (1997). arXiv:q-alg/9611007 · Zbl 0948.46048
[38] Rehren K.-H.: Canonical tensor product subfactors. Commun. Math. Phys. 211, 395-406 (2000) · Zbl 1021.46046 · doi:10.1007/s002200050818
[39] Schellekens A., Warner N.: Conformal subalgebras of Kac-Moody algebras. Phys. Rev. D 34, 3092-3096 (1986) · doi:10.1103/PhysRevD.34.3092
[40] Schroer B., Truong T.T.: The order/disorder quantum field operators associated with the two-dimensional Ising model in the continuum limit. Nucl. Phys. B 144, 80-122 (1978) · doi:10.1016/0550-3213(78)90499-6
[41] Xu F.: Jones-Wassermann subfactors for disconnected intervals. Commun. Contemp. Math. 2, 307-347 (2000) · Zbl 0966.46043
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.