×

Meso-scale turbulence in living fluids. (English) Zbl 1355.76026

Summary: Turbulence is ubiquitous, from oceanic currents to small-scale biological and quantum systems. Self-sustained turbulent motion in microbial suspensions presents an intriguing example of collective dynamical behavior among the simplest forms of life and is important for fluid mixing and molecular transport on the microscale. The mathematical characterization of turbulence phenomena in active nonequilibrium fluids proves even more difficult than for conventional liquids or gases. It is not known which features of turbulent phases in living matter are universal or system-specific or which generalizations of the Navier–Stokes equations are able to describe them adequately. Here, we combine experiments, particle simulations, and continuum theory to identify the statistical properties of self-sustained meso-scale turbulence in active systems. To study how dimensionality and boundary conditions affect collective bacterial dynamics, we measured energy spectra and structure functions in dense Bacillus subtilis suspensions in quasi-2D and 3D geometries. Our experimental results for the bacterial flow statistics agree well with predictions from a minimal model for self-propelled rods, suggesting that at high concentrations the collective motion of the bacteria is dominated by short-range interactions. To provide a basis for future theoretical studies, we propose a minimal continuum model for incompressible bacterial flow. A detailed numerical analysis of the 2D case shows that this theory can reproduce many of the experimentally observed features of self-sustained active turbulence.

MSC:

76F02 Fundamentals of turbulence
76D05 Navier-Stokes equations for incompressible viscous fluids

References:

[1] 5 pp 1174– (2009) · doi:10.1039/b812146j
[2] Annual Review of Fluid Mechanics 43 pp 637– (2011) · Zbl 1299.76320 · doi:10.1146/annurev-fluid-121108-145434
[3] Tero, Science 327 (5964) pp 439– (2010) · Zbl 1226.90021 · doi:10.1126/science.1177894
[4] Xavier 174 (1) pp 1– (2009) · doi:10.1086/599297
[5] PHYS TODAY 53 pp 24– (1997)
[6] Dombrowski, Physical Review Letters 93 (9) pp 098103– (2004) · doi:10.1103/PhysRevLett.93.098103
[7] Sokolov, Physical Review Letters 98 (15) pp 158102– (2007) · doi:10.1103/PhysRevLett.98.158102
[8] Riedel, Science 309 (5732) pp 300– (2005) · doi:10.1126/science.1110329
[9] PNAS 102 (7) pp 2277– (2005) · Zbl 1277.35332 · doi:10.1073/pnas.0406724102
[10] Kearns, Nature reviews. Microbiology 8 (9) pp 634– (2010) · doi:10.1038/nrmicro2405
[11] PNAS 107 pp 11865– (2009)
[12] PNAS 108 (46) pp 18720– (2011) · doi:10.1073/pnas.1107583108
[13] Philosophical Transactions of the Royal Society B: Biological Sciences 261 pp 5– (2006)
[14] ANN PHYS 318 pp 170– (2005) · Zbl 1126.82347 · doi:10.1016/j.aop.2005.04.011
[15] ANNU REV CONDENS MATTER PHYS 1 pp 323– (2010) · doi:10.1146/annurev-conmatphys-070909-104101
[16] PHYS REV E 58 pp 4828– (1998) · doi:10.1103/PhysRevE.58.4828
[17] 43 pp 737– (2007) · doi:10.1007/s00348-007-0387-y
[18] Biophysical Journal 95 (4) pp 1564– (2008) · doi:10.1529/biophysj.107.118257
[19] Annual Review of Fluid Mechanics 44 pp 373– (2012) · Zbl 1358.76086 · doi:10.1146/annurev-fluid-120710-101156
[20] Journal of The Royal Society Interface 8 (62) pp 1314– (2011) · doi:10.1098/rsif.2010.0545
[21] PNAS 108 (26) pp 10391– (2011) · doi:10.1073/pnas.1107046108
[22] PHYS REV E 75 pp 040901– (2007) · doi:10.1103/PhysRevE.75.040901
[23] Ishikawa, Physical Review Letters 107 (2) pp 028102– (2011) · doi:10.1103/PhysRevLett.107.028102
[24] PHYS REV E 83 pp 061907– (2011) · doi:10.1103/PhysRevE.83.061907
[25] 281 pp 17– (2000) · doi:10.1016/S0378-4371(00)00013-3
[26] Waters, Annual review of cell and developmental biology 21 pp 319– (2005) · doi:10.1146/annurev.cellbio.21.012704.131001
[27] Sokolov, Physical Review Letters 103 (14) pp 148101– (2009) · doi:10.1103/PhysRevLett.103.148101
[28] PNAS 108 (27) pp 10940– (2011) · doi:10.1073/pnas.1019079108
[29] PNAS 106 (37) pp 15567– (2009) · doi:10.1073/pnas.0906586106
[30] PHYS REV E 77 pp 011920– (2008) · doi:10.1103/PhysRevE.77.011920
[31] American Journal of Physiology - Gastrointestinal and Liver Physiology 45 pp 3– (1977)
[32] 65 pp 845– (2002) · doi:10.1088/0034-4885/65/5/204
[33] Uspekhi fiziologicheskikh nauk 170 pp 921– (2000) · doi:10.3367/UFNr.0170.200009a.0921
[34] 14 pp 1065– (2002) · Zbl 1185.76652 · doi:10.1063/1.1448296
[35] J FLUID MECH 339 pp 287– (1997) · doi:10.1017/S0022112097005338
[36] 9 pp 257– (1997) · doi:10.1063/1.869144
[37] 43 pp 547– (1980) · doi:10.1088/0034-4885/43/5/001
[38] PHYS REV E 59 pp 5457– (1999) · doi:10.1103/PhysRevE.59.5457
[39] J FLUID MECH 140 pp 63– (1984) · doi:10.1017/S0022112084000513
[40] Ginelli, Physical Review Letters 104 (18) pp 184502– (2010) · doi:10.1103/PhysRevLett.104.184502
[41] Darnton, Biophysical Journal 98 (10) pp 2082– (2010) · doi:10.1016/j.bpj.2010.01.053
[42] PNAS 107 (31) pp 13626– (2010) · doi:10.1073/pnas.1001651107
[43] 15 pp 319– (1977) · doi:10.1103/PhysRevA.15.319
[44] Europhysics Letters 85 pp 30003– (2009) · doi:10.1209/0295-5075/85/30003
[45] Annals of the New York Academy of Sciences 51 pp 627– (1949) · doi:10.1111/j.1749-6632.1949.tb27296.x
[46] Europhysics Letters 87 pp 48011– (2009) · doi:10.1209/0295-5075/87/48011
[47] Chen, Physical Review Letters 108 (14) pp 148101– (2012) · doi:10.1103/PhysRevLett.108.148101
[48] 6 pp 4268– (2010) · doi:10.1039/c0sm00164c
[49] Narayan, Science 317 (5834) pp 105– (2007) · doi:10.1126/science.1140414
[50] EXP MECH 50 pp 1293– (2010) · doi:10.1007/s11340-010-9406-7
[51] Aditi Simha, Physical Review Letters 89 (5) pp 058101– (2002) · doi:10.1103/PhysRevLett.89.058101
[52] 20 pp 123304– (2008) · Zbl 1182.76654 · doi:10.1063/1.3041776
[53] Doklady Akademii Nauk. Rossiyskaya Akademiya Nauk 30 pp 299– (1941)
[54] 21 pp 204107– (2009) · doi:10.1088/0953-8984/21/20/204107
[55] 10 pp 287– (1976) · Zbl 0377.76030 · doi:10.1007/BF01535565
[56] Guasto, Physical Review Letters 105 (16) pp 168102– (2010) · doi:10.1103/PhysRevLett.105.168102
[57] Macromolecules 16 pp 1475– (1983) · doi:10.1021/ma00243a012
[58] PHYS REV E 83 pp 050904(R)– (2011) · doi:10.1103/PhysRevE.83.050904
[59] Groisman, Nature; Physical Science (London) 405 (6782) pp 53– (2000) · doi:10.1038/35011019
[60] PHYS REV E 81 pp 036310– (2010) · doi:10.1103/PhysRevE.81.036310
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.