×

Parametric Raviart-Thomas elements for mixed methods on domains with curved surfaces. (English) Zbl 1355.65151

Summary: The finite element approximation on curved boundaries using parametric Raviart-Thomas spaces is studied in the context of the mixed formulation of Poisson’s equation as a saddle-point system. It is shown that optimal-order convergence is retained on domains with piecewise \(C^{k+2}\) boundary for the parametric Raviart-Thomas space of degree \(k\geq 0\) under the usual regularity assumptions. This extends the analysis of the first author et al. [ibid. 52, No. 6, 3165–3180 (2014; Zbl 1312.65184)] from the first-order system least squares formulation to mixed approaches of saddle-point type. In addition, a detailed proof of the crucial estimate in three dimensions is given which handles some complications not present in the two-dimensional case. Moreover, the appropriate treatment of inhomogeneous flux boundary conditions is discussed. The results are confirmed by computational results which also demonstrate that optimal-order convergence is not achieved, in general, if standard Raviart-Thomas elements are used instead of the parametric spaces.

MSC:

65N30 Finite element, Rayleigh-Ritz and Galerkin methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65N50 Mesh generation, refinement, and adaptive methods for boundary value problems involving PDEs
65N12 Stability and convergence of numerical methods for boundary value problems involving PDEs

Citations:

Zbl 1312.65184
Full Text: DOI

References:

[1] R. A. Adams and J. F. Fournier, {\it Sobolev Spaces}, 2nd ed., Academic, New York, 2003. · Zbl 1098.46001
[2] D. N. Arnold, D. Boffi, and R. S. Falk, {\it Quadrilateral \(H\)(div) finite elements}, SIAM J. Numer. Anal., 42 (2005), pp. 2429-2451. · Zbl 1086.65105
[3] F. Bertrand, S. Münzenmaier, and G. Starke, {\it First-order system least squares on curved boundaries: Higher-order Raviart-Thomas elements}, SIAM J. Numer. Anal., 52 (2014), pp. 3165-3180. · Zbl 1312.65184
[4] F. Bertrand, S. Münzenmaier, and G. Starke, {\it First-order system least squares on curved boundaries: Lowest-order Raviart-Thomas elements}, SIAM J. Numer. Anal., 52 (2014), pp. 880-894. · Zbl 1300.65084
[5] P. Bochev and M. Gunzburger, {\it Least-Squares Finite Element Methods}, Springer, New York, 2009. · Zbl 1168.65067
[6] D. Boffi, F. Brezzi, and M. Fortin, {\it Mixed Finite Element Methods and Applications}, Springer, Heidelberg, 2013. · Zbl 1277.65092
[7] S. C. Brenner and L. R. Scott, {\it The Mathematical Theory of Finite Element Methods}, 3rd ed., Springer, New York, 2008. · Zbl 1135.65042
[8] Z. Cai and S. Zhang, {\it Robust equilibrated residual error estimator for diffusion problems: Conforming elements}, SIAM J. Numer. Anal., 50 (2012), pp. 151-170. · Zbl 1253.65175
[9] P. G. Ciarlet, {\it The Finite Element Method for Elliptic Problems}, North-Holland, Amsterdam, 1978. · Zbl 0383.65058
[10] A. Ern and M. Vohralík, {\it Polynomial-degree-robust a posteriori error estimates in a unified setting for conforming, nonconforming, discontinuous Galerkin, and mixed discretizations}, SIAM J. Numer. Anal., 53 (2015), pp. 1058-1081. · Zbl 1312.76026
[11] S. Frei and T. Richter, {\it A locally modified parametric finite element method for interface problems}, SIAM J. Numer. Anal., 52 (2014), pp. 2315-2334. · Zbl 1310.65145
[12] P. Grisvard, {\it Elliptic Problems in Nonsmooth Domains}, Pitman, Boston, 1985. · Zbl 0695.35060
[13] A. Hannukainen, R. Stenberg, and M. Vohralik, {\it A unified framework for a posteriori error estimation for the Stokes equation}, Numer. Math., 122 (2012), pp. 725-769. · Zbl 1301.76049
[14] K.-Y. Kim, {\it Flux reconstruction for the P2 nonconforming finite element method with application to a posteriori error estimation}, Appl. Numer. Math., 62 (2012), pp. 1701-1717. · Zbl 1266.65194
[15] M. Lenoir, {\it Optimal isoparametric finite elements and error estimates for domains involving curved boundaries}, SIAM J. Numer. Anal., 23 (1986), pp. 562-580. · Zbl 0605.65071
[16] P. J. Matuszyk and L. F. Demkowicz, {\it Parametric finite elements, exact sequences and perfectly matched layers}, Comput. Mech., 51 (2013), pp. 35-45. · Zbl 1398.65308
[17] P. Monk, {\it Finite Element Methods for Maxwell’s Equations}, Oxford University Press, New York, 2003. · Zbl 1024.78009
[18] M. E. Rognes, R. C. Kirby, and A. Logg, {\it Efficient assembly of \(H(div)\) and \(H(curl)\) conforming finite elements}, SIAM J. Sci. Comput., 31 (2010), pp. 4130-4151. · Zbl 1206.65248
[19] R. Verfürth, {\it A Posteriori Error Estimation Techniques for Finite Element Methods}, Oxford University Press, New York, 2013. · Zbl 1279.65127
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.