×

On Mittag-Leffler distributions and related stochastic processes. (English) Zbl 1355.60115

Summary: Random variables with Mittag-Leffler distribution can take values either in the set of non-negative integers or in the positive real line. They can be of two different types, one (type-1) heavy-tailed with index \(\alpha \in(0, 1)\), the other (type-2) possessing all its moments. We investigate various stochastic processes where they play a key role, among which: the discrete space/time Neveu branching process, the discrete-space continuous-time Neveu branching process, the continuous space/time Neveu branching process (CSBP) and renewal processes with rare events. Its relation to (discrete or continuous) self-decomposability and branching processes with immigration is emphasized. Special attention will be paid to the Neveu CSBP for its connection with the Bolthausen-Sznitman coalescent. In this context, and following a recent work of M. Möhle [ALEA, Lat. Am. J. Probab. Math. Stat. 12, No. 1, 35–53 (2015; Zbl 1329.60271)], a type-2 Mittag-Leffler process turns out to be the Siegmund dual to Neveu’s CSBP block-counting process arising in sampling from \(\mathrm{PD}(e^{- t}, 0)\). Further combinatorial developments of this model are investigated.

MSC:

60J80 Branching processes (Galton-Watson, birth-and-death, etc.)
60E05 Probability distributions: general theory
60E07 Infinitely divisible distributions; stable distributions
60G18 Self-similar stochastic processes
60K05 Renewal theory

Citations:

Zbl 1329.60271
Full Text: DOI

References:

[1] Steutel, F. W.; van Harn, K., Discrete analogues of self-decomposability and stability, Ann. Probab., 7, 893-899 (1979) · Zbl 0418.60020
[2] Christoph, G.; Schreiber, K., Scaled Sibuya distribution and discrete self-decomposability, Statist. Probab. Lett., 48, 181-187 (2000) · Zbl 0951.60020
[3] Darling, D. A., The Galton-Watson process with infinite mean, J. Appl. Probab., 7, 455-456 (1970) · Zbl 0201.19302
[4] Grey, D. R., Almost sure convergence in Markov branching processes with infinite mean, J. Appl. Probab., 14, 4, 702-716 (1977) · Zbl 0378.60064
[5] Hénard, O., The fixation line in the Lambda-coalescent, Ann. Appl. Probab., 25, 5, 3007-3032 (2015) · Zbl 1325.60124
[6] Johnson, O., Log-concavity and the maximum entropy property of the Poisson distribution, Stochastic Process. Appl., 117, 6, 791-802 (2007) · Zbl 1115.60012
[8] Comtet, L., Analyse combinatoire. Tomes 1 et 2 (1970), Presses Universitaires de France: Presses Universitaires de France Paris · Zbl 0221.05001
[9] Charalambides, C. A.; Singh, J., A review of the Stirling numbers, their generalizations and statistical applications, Comm. Statist. Theory Methods, 17, 8 (1988) · Zbl 0696.62025
[10] Norris, J. R., Markov Chains (1998), Cambridge University Press · Zbl 0938.60058
[11] Pitman, J., Combinatorial stochastic processes, (Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 724, 2002. With a Foreword by Jean Picard. Lectures from the 32nd Summer School on Probability Theory held in Saint-Flour, July 724, 2002. With a Foreword by Jean Picard, Lecture Notes in Mathematics, vol. 1875 (2006), Springer-Verlag: Springer-Verlag Berlin)
[12] Hoppe, F. M., On a Schröder equation arising in branching processes, Aequationes Math., 20, 33-37 (1980) · Zbl 0433.39008
[13] Harris, T. E., (The Theory of Branching Processes. The Theory of Branching Processes, Die Grundlehren der Mathematischen Wissenschaften, Bd. 119 (1963), Springer-Verlag: Springer-Verlag Berlin), Prentice-Hall, Inc., Englewood Cliffs, N.J. · Zbl 0117.13002
[14] Sevastianov, B. A., Branching Processes (1971), Nauka: Nauka Moscow, (in Russian) · Zbl 0238.60001
[15] Sevastianov, B. A., Branching processes, Mat. Zametki, 4, 239-251 (1978)
[16] Lagerås, A. N.; Martin-Löf, A., Genealogy for supercritical branching processes, J. Appl. Probab., 43, 4, 1066-1076 (2006) · Zbl 1139.60040
[17] Avan, J.; Grosjean, N.; Huillet, T., On extreme events for non-spatial and spatial branching Brownian motions, Physica D, 298, 13-20 (2015) · Zbl 1364.60101
[18] Berestycki, J.; Berestycki, N.; Schweinsberg, J., Beta-coalescents and continuous stable random trees, Ann. Probab., 35, 5, 1835-1887 (2007) · Zbl 1129.60067
[19] Lamperti, J. W., Continuous state branching processes, Bull. Amer. Math. Soc. (N.S.), 73, 382-386 (1967) · Zbl 0173.20103
[20] Pillai, R. N., On Mittag-Leffler functions and related distributions, Ann. Inst. Statist. Math., 42, 157-161 (1990) · Zbl 0714.60009
[21] Pillai, R. N.; Jayajumar, K., Discrete Mittag-Leffler distributions, Statist. Probab. Lett., 23, 3, 271-274 (1995) · Zbl 0829.60010
[22] Lamperti, J., Semi-stable stochastic processes, 22, 205-225 (1972) · Zbl 0274.60052
[23] Mathai, A. M., Some properties of Mittag-Leffler functions and matrix-variate analogues: A statistical perspective, Fract. Calc. Appl. Anal., 13, 1, 113-132 (2010) · Zbl 1211.26007
[24] Huillet, T., On Linnik’s continuous-time random walks, J. Phys. A: Math. Gen., 33, 2631 (2000) · Zbl 0956.82012
[25] Christoph, G.; Schreiber, K., Positive Linnik and discrete Linnik distributions, (Balakrishnan, N.; Ibragimov, I. A.; Nevzorov, V. B., Asymptotic Methods in Probability and Statistics with Applications (2001), Springer Science+Business Media, LLC), 3-18 · Zbl 1019.60012
[26] Christoph, G.; Schreiber, K., The generalized discrete Linnik distributions, (Kahle, W.; Collani, E.v.; Franz, J.; Jensen, U., Advances in Stochastic Models for Reliability, Quality and Safety (1998), Birkhäuser), 3-18 · Zbl 0918.62009
[27] Devroye, L., A note on Linnik distribution, Statist. Probab. Lett., 9, 305-306 (1990) · Zbl 0698.60019
[28] Devroye, L., A triptych of discrete distributions related to stable law, Statist. Probab. Lett., 18, 349-351 (1993) · Zbl 0794.60007
[29] Lukacs, E., Developments in Characteristic Function Theory (1983), Griffin · Zbl 0515.60022
[30] Christoph, G.; Schreiber, K., Discrete stable random variables, Statist. Probab. Lett., 37, 243-247 (1998) · Zbl 1246.60026
[31] Vervaat, W., On a stochastic difference equation and a representation of non-negative infinitely divisible random variables, Adv. Appl. Probab., 11, 750-783 (1979) · Zbl 0417.60073
[32] van Harn, K.; Steutel, F. W.; Vervaat, W., Self-decomposable discrete distributions and branching processes, Z. Wahrscheinlichkeitstheor. Verwandte Geb., 61, 97-118 (1982) · Zbl 0476.60016
[33] Feller, W., An Introduction to Probability Theory and Its Applications, 2 (1971), Wiley: Wiley New York · Zbl 0219.60003
[34] Sato, K.-I., Lévy Processes and Infinitely Divisible Distributions (1999), Cambridge University Press: Cambridge University Press Cambridge, UK · Zbl 0973.60001
[35] Uchaikin, V. V.; Zolotarev, V. M., Chance and Stability: Stable Distributions and Their Applications, 570 (1999), Walter de Gruyter · Zbl 0944.60006
[36] Çinlar, E., Introduction to Stochastic Processes (1975), Prentice-Hall · Zbl 0341.60019
[37] Laskin, N., Fractional Poisson process, Commun. Nonlinear Sci. Numer. Simul., 8, 201-213 (2003) · Zbl 1025.35029
[38] Beghin, L.; Orsingher, E., Fractional Poisson processes and related random motions, Electron. J. Probab., 14, 1790-1826 (2009) · Zbl 1190.60028
[39] Mainardi, F.; Gorenflo, R.; Scalas, E., A fractional generalization of the Poisson processes, Vietnam J. Math., 32, SI, 53-64 (2004) · Zbl 1087.60064
[40] Gorenflo, R.; Kilbas, A. A.; Mainardi, F.; Rogosin, S. V., (Mittag-Leffler Functions. Related Topics and Applications. Mittag-Leffler Functions. Related Topics and Applications, Springer Monographs in Mathematics (2014), Springer: Springer Berlin), pp. XII+ 420 · Zbl 1309.33001
[41] Mainardi, F.; Gorenflo, R.; Vivoli, A., Beyond the Poisson renewal process: A tutorial survey, J. Comput. Appl. Math., 205, 2, 725-735 (2007) · Zbl 1115.60082
[42] Meerschaert, M. M.; Nane, E.; Vellaisamy, P., The fractional Poisson process and the inverse stable subordinator, Electron. J. Probab., 16, 1600-1620 (2011), Paper no. 59 · Zbl 1245.60084
[43] Möhle, M., The Mittag-Leffler process and a scaling limit for the block counting process of the Bolthausen-Sznitman coalescent, ALEA Lat. Am. J. Probab. Math. Stat., 12, 1, 35-53 (2015) · Zbl 1329.60271
[44] Siegmund, D., The equivalence of absorbing and reflecting barrier problems for stochastically monotone Markov processes, Ann. Probab., 4, 6, 914-924 (1976) · Zbl 0364.60109
[45] Bertoin, J.; Le Gall, J. F., The Bolthausen-Sznitman coalescent and the genealogy of continuous state branching processes, Probab. Theory Related Fields, 117, 249-266 (2000) · Zbl 0963.60086
[46] Bertoin, J., (Subordinators, Lévy Processes with No Negative Jumps and Branching Processes. Subordinators, Lévy Processes with No Negative Jumps and Branching Processes, Lecture Notes of the Concentrated Advanced Course on Lévy Processes (2000), Maphysto, Centre for Mathematical Physics and Stochastics, Department of Mathematical Sciences, University of Aarhus)
[47] Huillet, T., Energy cascades as branching processes with emphasis on Neveu’s approach to Derrida’s random energy model, Adv. Appl. Probab., 35, 2, 477-503 (2003) · Zbl 1034.60079
[48] Grey, D. R., Asymptotic behaviour of continuous time, continuous state-space branching processes, J. Appl. Probab., 11, 669-677 (1974) · Zbl 0301.60060
[49] Takács, L., Combinatorial Methods in the Theory of Stochastic Processes (1967), John Wiley & Sons, Inc.: John Wiley & Sons, Inc. New York, London, Sydney · Zbl 0162.21303
[50] Bingham, N. H., Continuous branching processes and spectral positivity, Stochastic Process. Appl., 4, 3, 217-242 (1976) · Zbl 0338.60051
[51] Kyprianou, A. E., (Introductory Lectures on Fluctuations of Lévy Processes with Applications. Introductory Lectures on Fluctuations of Lévy Processes with Applications, Universitex (2014), Springer) · Zbl 1384.60003
[52] Spitzer, F., (Principles of random walks. Principles of random walks, Graduate Texts in Mathematics, vol. 34 (1976), Springer-Verlag: Springer-Verlag New York, Heidelberg) · Zbl 0359.60003
[53] Pitman, J.; Yor, M., The two parameter Poisson-Dirichlet distribution derived from a stable subordinator, Ann. Probab., 25, 855-900 (1997) · Zbl 0880.60076
[54] Kingman, J. F.C., (Poisson Processes. Poisson Processes, Oxford Studies in Probability, vol. 3 (1993), Oxford Science Publications. The Clarendon Press, Oxford University Press: Oxford Science Publications. The Clarendon Press, Oxford University Press New York) · Zbl 0771.60001
[55] Kingman, J. F.C., Random discrete distributions, J. R. Stat. Soc. Ser. B, 37, 1-22 (1975) · Zbl 0331.62019
[56] Ruelle, D., Mathematical reformulation of Derrida’s REM and GREM, Comm. Math. Phys., 108, 225-239 (1987) · Zbl 0617.60100
[57] Huillet, T., Pareto genealogies arising from a Poisson branching evolution model with selection, J. Math. Biol., 68, 3, 727-761 (2014) · Zbl 1295.60083
[58] Feng, S., (The Poisson-Dirichlet Distribution and Related Topics. Models and Asymptotic Behaviors. The Poisson-Dirichlet Distribution and Related Topics. Models and Asymptotic Behaviors, Probability and its Applications (New York) (2010), Springer: Springer Heidelberg) · Zbl 1214.60001
[59] Möhle, M.; Pitters, H., A spectral decomposition for the block counting process of the Bolthausen-Sznitman coalescent, Electron. Commun. Probab., 19, 47, 1-11 (2014) · Zbl 1334.60157
[60] Pitman, J., Coalescents with multiple collisions, Ann. Probab., 27, 4, 1870-1902 (1999) · Zbl 0963.60079
[62] Birkner, M.; Blath, J., Computing likelihoods for coalescents with multiple collisions in the infinitely many sites model, J. Math. Biol., 57, 3, 435-465 (2008) · Zbl 1274.92039
[63] Ethier, S. N.; Kurtz, T. G., Fleming-Viot processes in population genetics, SIAM J. Control Optim., 31, 2, 345-386 (1993) · Zbl 0774.60045
[64] Huillet, T., Diffusion versus jump processes arising as scaling limits in population genetics, J. Stat. Adv. Theory Appl., 7, 2, 85-154 (2012) · Zbl 06144523
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.