×

The influence of single neuron dynamics and network topology on time delay-induced multiple synchronous behaviors in inhibitory coupled network. (English) Zbl 1354.92006

Summary: Time delay induced-multiple synchronous behaviors are simulated in neuronal network composed of many inhibitory neurons and appear at different time delays shorter than a period of endogenous bursting of individual neurons. It is different from previous investigations wherein only one of multiple synchronous behaviors appears at time delay shorter than a period of endogenous firing and others appear at time delay longer than the period duration. The bursting patterns of the synchronous behaviors are identified based on the dynamics of an individual neuron stimulated by a signal similar to the inhibitory coupling current, which is applied at the decaying branch of a spike and suitable phase within the quiescent state of the endogenous bursting. If a burst of endogenous bursting contains more spikes, the synchronous behaviors appear at more regions of time delay. As the coupling strength increases, the multiple synchronous behaviors appear in a sequence because the different threshold of coupling current or strength is needed to achieve synchronous behaviors. From regular, to small-world, and to random networks, synchronous degree of the multiple synchronous behaviors becomes weak, and synchronous bursting patterns with lower spikes per burst disappear, which is properly interpreted by the difference of coupling current between neurons induced by different degree and the high threshold of coupling current to achieve synchronization for the absent synchronous bursting patterns. The results of the influence of individual neurons, topology of network, time delay, and coupling strength on the multiple synchronous behaviors are helpful to the understanding of the synchronous dynamics of the neuronal network composed of inhibitory neurons.

MSC:

92B20 Neural networks for/in biological studies, artificial life and related topics
92B25 Biological rhythms and synchronization
Full Text: DOI

References:

[1] Arenas, A.; Díaz-Guilera, A.; Kurths, J.; Moreno, Y.; Zhou, C., Synchronization in complex networks, Phys Rep, 469, 3, 93-153 (2008)
[2] Pikovsky, A.; Rosenblum, M.; Kurths, J., Synchronization: a universal concept in nonlinear sciences (2001), Cambridge University Press: Cambridge University Press Cambridge, England · Zbl 0993.37002
[3] Osipov, G. V.; Kurths, J.; Zhou, C., Synchronization in oscillatory networks (2007), Springer Science & Business Media · Zbl 1137.37018
[4] Gray, C. M.; König, P.; Engel, A. K.; Singer, W., Oscillatory responses in cat visual cortex exhibit inter-columnar synchronization which reflects global stimulus properties, Nature, 338, 6213, 334-337 (1989)
[5] Riehle, A.; Grün, S.; Diesmann, M.; Aertsen, A., Spike synchronization and rate modulation differentially involved in motor cortical function, Science, 278, 5345, 1950-1953 (1997)
[6] Steinmetz, P. N.; Roy, A.; Fitzgerald, P.; Hsiao, S.; Johnson, K.; Niebur, E., Attention modulates synchronized neuronal firing in primate somatosensory cortex, Nature, 404, 6774, 187-190 (2000)
[7] Varela, F.; Lachaux, J. P.; Rodriguez, E.; Martinerie, J., The brainweb: phase synchronization and large-scale integration, Nat Rev Neurosci, 2, 4, 229-239 (2001)
[8] Uhlhaas, P. J.; Singer, W., Neural synchrony in brain disorders: relevance for cognitive dysfunctions and pathophysiology, Neuron, 52, 1, 155-168 (2006)
[9] Traub, R. D.; Bibbig, A.; LeBeau, F. E.; Buhl, E. H.; Whittington, M. A., Cellular mechanisms of neuronal population oscillations in the hippocampus in vitro, Annu Rev Neurosci, 27, 247-278 (2004)
[10] Cheng, W.; Rolls, E. T.; Gu, H.; Zhang, J.; Feng, J., Autism: reduced connectivity between cortical areas involved in face expression, theory of mind, and the sense of self, Brain, 138, 5, 1382-1393 (2015)
[11] Dhamala, M.; Jirsa, V. K.; Ding, M., Enhancement of neural synchrony by time delay, Phys Rev Lett, 92, 7, 074104 (2004)
[12] Dhamala, M.; Jirsa, V. K.; Ding, M., Transitions to synchrony in coupled bursting neurons, Phys Rev Lett, 92, 2, 028101 (2004)
[13] Burić, N.; Todorović, K.; Vasović, N., Synchronization of bursting neurons with delayed chemical synapses, Phys Rev E, 78, 3, 036211 (2008)
[14] Belykh, I.; de Lange, E.; Hasler, M., Synchronization of bursting neurons: what matters in the network topology, Phys Rev Lett, 94, 18, 188101 (2005)
[15] Boccaletti, S.; Latora, V.; Moreno, Y.; Chavez, M.; Hwang, D., Complex networks: structure and dynamics, Phys Rep, 424, 4, 175-308 (2006) · Zbl 1371.82002
[16] Rabinovich, M. I.; Varona, P.; Selverston, A. I.; Abarbanel, H. D., Dynamical principles in neuroscience, Rev Mod Phys, 78, 4, 1213 (2006)
[17] Hestrin, S., The strength of electrical synapses, Science, 334, 6054, 315-316 (2011)
[18] Kandel, E. R.; Schwartz, J. H.; Jessell, T. M., Principles of neural science, vol. 4 (2000), McGraw-Hill: McGraw-Hill New York
[19] Bartos, M.; Vida, I.; Jonas, P., Synaptic mechanisms of synchronized gamma oscillations in inhibitory interneuron networks, Nat Rev Neurosci, 8, 1, 45-56 (2007)
[20] Qin, H.; Ma, J.; Jin, W.; Wang, C., Dynamics of electric activities in neuron and neurons of network induced by autapses, Sci China Technol Sci, 57, 5, 936-946 (2014)
[21] Wang, H.; Ma, J.; Chen, Y.; Chen, Y., Effect of an autapse on the firing pattern transition in a bursting neuron, Commun in Nonlinear Sci Numer Simul, 19, 9, 3242-3254 (2014) · Zbl 1510.92054
[22] Wang, Q.; Duan, Z.; Perc, M.; Chen, G., Synchronization transitions on small-world neuronal networks: effects of information transmission delay and rewiring probability, Europhys Lett, 83, 5, 50008 (2008)
[23] Wang, Q.; Chen, G.; Perc, M., Synchronous bursts on scale-free neuronal networks with attractive and repulsive coupling, PLoS One, 6, 1, e15851 (2011)
[24] Pérez, T.; Garcia, G. C.; Egúluz, V. M.; Vicente, R.; Pipa, G.; Mirasso, C., Effect of the topology and delayed interactions in neuronal networks synchronization, PLoS One, 6, 5, e19900 (2011)
[25] Tang, J.; Ma, J.; Yi, M.; Xia, H.; Yang, X., Delay and diversity-induced synchronization transitions in a small-world neuronal network, Phys Rev E, 83, 4, 046207 (2011)
[26] Wang, Q.; Chen, G., Delay-induced intermittent transition of synchronization in neuronal networks with hybrid synapses, Chaos, 21, 1, 013123 (2011)
[27] Liu, C.; Wang, J.; Yu, H.; Deng, B.; Wei, X.; Sun, J.; Chen, Y., The effects of time delay on the synchronization transitions in a modular neuronal network with hybrid synapses, Chaos Solitons Fractals, 47, 54-65 (2013)
[28] Wang, Q.; Perc, M.; Duan, Z.; Chen, G., Synchronization transitions on scale-free neuronal networks due to finite information transmission delays, Phys Rev E, 80, 2, 026206 (2009)
[29] Maex, R.; De Schutter, E., Resonant synchronization in heterogeneous networks of inhibitory neurons, J Neurosci, 23, 33, 10503-10514 (2003)
[30] Bartos, M.; Vida, I.; Frotscher, M.; Geiger, J. R.; Jonas, P., Rapid signaling at inhibitory synapses in a dentate gyrus interneuron network, J Neurosci, 21, 8, 2687-2698 (2001)
[31] Vida, I.; Bartos, M.; Jonas, P., Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates, Neuron, 49, 1, 107-117 (2006)
[32] Bartos, M.; Vida, I.; Frotscher, M.; Meyer, A.; Monyer, H.; Geiger, J. R.; Jonas, P., Fast synaptic inhibition promotes synchronized gamma oscillations in hippocampal interneuron networks, Proc Natl Acad Sci USA, 99, 20, 13222-13227 (2002)
[33] Lisman, J. E., Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions, Neuron, 22, 2, 233-242 (1999)
[34] Rubin, J.; Terman, D., Synchronized activity and loss of synchrony among heterogeneous conditional oscillators, SIAM J Appl Dyn Syst, 1, 1, 146-174 (2002) · Zbl 1015.34027
[35] Rubin, J.; Terman, D., Geometric analysis of population rhythms in synaptically coupled neuronal networks, Neural Comput, 12, 3, 597-645 (2000)
[36] Van Vreeswijk, C.; Abbott, L.; Ermentrout, G. B., When inhibition not excitation synchronizes neural firing, J Comput Neurosci, 1, 4, 313-321 (1994)
[37] Terman, D.; Kopell, N.; Bose, A., Dynamics of two mutually coupled slow inhibitory neurons, Physica D, 117, 1, 241-275 (1998) · Zbl 0941.34027
[38] Wang, X. J.; Rinzel, J., Alternating and synchronous rhythms in reciprocally inhibitory model neurons, Neural Comput, 4, 1, 84-97 (1992)
[39] Wang, X. J.; Rinzel, J., Spindle rhythmicity in the reticularis thalami nucleus: synchronization among mutually inhibitory neurons, Neuroscience, 53, 4, 899-904 (1993)
[40] Elson, R. C.; Selverston, A. I.; Abarbanel, H. D.; Rabinovich, M. I., Inhibitory synchronization of bursting in biological neurons: dependence on synaptic time constant, J Neurophysiol, 88, 3, 1166-1176 (2002)
[41] Belykh, I.; Shilnikov, A., When weak inhibition synchronizes strongly desynchronizing networks of bursting neurons, Phys Rev Lett, 101, 7, 078102 (2008)
[42] Jalil, S.; Belykh, I.; Shilnikov, A., Fast reciprocal inhibition can synchronize bursting neurons, Phys Rev E, 81, 4, 045201 (2010)
[43] Ernst, U.; Pawelzik, K.; Geisel, T., Synchronization induced by temporal delays in pulse-coupled oscillators, Phys Rev Lett, 74, 9, 1570 (1995)
[44] Ernst, U.; Pawelzik, K.; Geisel, T., Delay-induced multistable synchronization of biological oscillators, Phys Rev E, 57, 2, 2150 (1998)
[45] Kunec, S.; Bose, A., Role of synaptic delay in organizing the behavior of networks of self-inhibiting neurons, Phys Rev E, 63, 2, 021908 (2001)
[46] Zhang, X.; Li, P.; Wu, F.; Wu, W.; Jiang, M.; Chen, L.; Qi, G.; Huang, H., Transition from winnerless competition to synchronization in time-delayed neuronal motifs, Europhys Lett, 97, 5, 58001 (2012)
[47] Liang, X.; Tang, M.; Dhamala, M.; Liu, Z., Phase synchronization of inhibitory bursting neurons induced by distributed time delays in chemical coupling, Phys Rev E, 80, 6, 066202 (2009)
[48] Wang, Q.; Murks, A.; Perc, M.; Lu, Q., Taming desynchronized bursting with delays in the macaque cortical network, Chin Phys B, 20, 4, 040504 (2011)
[49] Watts, D. J.; Strogatz, S. H., Collective dynamics of ‘small-world’ networks, Nature, 393, 6684, 440-442 (1998) · Zbl 1368.05139
[50] Barabási, A. L.; Albert, R., Emergence of scaling in random networks, Science, 286, 5439, 509-512 (1999) · Zbl 1226.05223
[51] Bonifazi, P.; Goldin, M.; Picardo, M. A.; Jorquera, I.; Cattani, A.; Bianconi, G.; Represa, A.; Ben-Ari, Y.; Cossart, R., Gabaergic hub neurons orchestrate synchrony in developing hippocampal networks, Science, 326, 5958, 1419-1424 (2009)
[52] Bassett, D. S.; Bullmore, E., Small-world brain networks, Neuroscientist, 12, 6, 512-523 (2006)
[53] Netoff, T. I.; Clewley, R.; Arno, S.; Keck, T.; White, J. A., Epilepsy in small-world networks, J Neurosci, 24, 37, 8075-8083 (2004)
[54] Ponten, S.; Bartolomei, F.; Stam, C., Small-world networks and epilepsy: graph theoretical analysis of intracerebrally recorded mesial temporal lobe seizures, Clin Neurophysiol, 118, 4, 918-927 (2007)
[55] Perc, M., Spatial decoherence induced by small-world connectivity in excitable media, New J Phys, 7, 1, 252 (2005)
[56] Perc, M., Effects of small-world connectivity on noise-induced temporal and spatial order in neural media, Chaos Solitons Fractals, 31, 2, 280-291 (2007) · Zbl 1133.92007
[57] Perc, M., Stochastic resonance on weakly paced scale-free networks, Phys Rev E, 78, 3, 036105 (2008)
[58] Barahona, M.; Pecora, L. M., Synchronization in small-world systems, Phys Rev Lett, 89, 5, 054101 (2002)
[59] Li, Y. L.; Ma, J.; Liu, Y. J.; Zhang, L. P.; Su, J. Y., Synchronization of time delay fitzhugh-nagumo small-world networks, Int J Mod Phys C, 20, 10, 1521-1529 (2009) · Zbl 1189.82092
[60] Shi, X.; Sun, X.; Lv, Y.; Lu, Q.; Wang, H., Cluster synchronization and rhythm dynamics in a complex neuronal network with chemical synapses, Int J Nonlinear Mech, 70, 112-118 (2015)
[61] Kim, S. Y.; Lim, W., Noise-induced burst and spike synchronizations in an inhibitory small-world network of subthreshold bursting neurons, Cogn Neurodyn, 9, 2, 1-22 (2014)
[62] Wang, Q.; Perc, M.; Duan, Z.; Chen, G., Impact of delays and rewiring on the dynamics of small-world neuronal networks with two types of coupling, Physica A, 389, 16, 3299-3306 (2010)
[63] Barrat, A.; Weigt, M., On the properties of small-world network models, Eur Phys J B, 13, 3, 547-560 (2000)
[64] Wang, Q.; Zhang, H.; Chen, G., Stimulus-induced transition of clustering firings in neuronal networks with information transmission delay, Eur Phys J B, 86, 7, 1-7 (2013)
[65] Wang, Q.; Duan, Z.; Feng, Z.; Chen, G.; Lu, Q., Synchronization transition in gap-junction-coupled leech neurons, Physica A, 387, 16, 4404-4410 (2008)
[66] Wang, Q.; Zheng, Y.; Ma, J., Cooperative dynamics in neuronal networks, Chaos Solitons Fractals, 56, 19-27 (2013)
[67] Guo, D.; Wang, Q.; Perc, M., Complex synchronous behavior in interneuronal networks with delayed inhibitory and fast electrical synapses, Phys Rev E, 85, 6, 061905 (2012)
[68] Shilnikov, A.; Cymbalyuk, G., Transition between tonic spiking and bursting in a neuron model via the blue-sky catastrophe, Phys Rev Lett, 94, 4, 048101 (2005)
[69] Gu, H.; Chen, S., Potassium-induced bifurcations and chaos of firing patterns observed from biological experiment on a neural pacemaker, Sci China Technol Sci, 57, 5, 864-871 (2014)
[70] Gu, H.; Pan, B.; Chen, G.; Duan, L., Biological experimental demonstration of bifurcations from bursting to spiking predicted by theoretical models, Nonlinear Dyn, 78, 1, 391-407 (2014)
[71] Somers, D.; Kopell, N., Rapid synchronization through fast threshold modulation, Biol Cybern, 68, 5, 393-407 (1993)
[72] Cymbalyuk, G. S.; Gaudry, Q.; Masino, M. A.; Calabrese, R. L., Bursting in leech heart interneurons: cell-autonomous and network-based mechanisms, J Neurosci, 22, 24, 10580-10592 (2002)
[73] Rosenblum, M. G.; Pikovsky, A. S.; Kurths, J., From phase to lag synchronization in coupled chaotic oscillators, Phys Rev Lett, 78, 22, 4193 (1997)
[74] Izhikevich, E. M.; Desai, N. S.; Walcott, E. C.; Hoppensteadt, F. C., Bursts as a unit of neural information: selective communication via resonance, Trends Neurosci, 26, 3, 161-167 (2003)
[75] Lisman, J. E., Bursts as a unit of neural information: making unreliable synapses reliable, Trends Neurosci, 20, 1, 38-43 (1997)
[76] Izhikevich, E. M., Neural excitability, spiking and bursting, Int J Bifurcat Chaos, 10, 06, 1171-1266 (2000) · Zbl 1090.92505
[77] Sherman, A.; Rinzel, J., Rhythmogenic effects of weak electrotonic coupling in neuronal models, Proc Natl Acad Sci USA, 89, 6, 2471-2474 (1992)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.