×

Uncertainty and robustness in weather derivative models. (English) Zbl 1354.91148

Cools, Ronald (ed.) et al., Monte Carlo and quasi-Monte Carlo methods. MCQMC. Proceedings of the 11th international conference on ‘Monte Carlo and quasi-Monte Carlo methods in scientific computing’, Leuven, Belgium, April 6–11, 2014. Cham: Springer (ISBN 978-3-319-33505-6/hbk; 978-3-319-33507-0/ebook). Springer Proceedings in Mathematics & Statistics 163, 351-365 (2016).
Summary: Pricing of weather derivatives often requires a model for the underlying temperature process that can characterize the dynamic behavior of daily average temperatures. The comparison of different stochastic models with a different number of model parameters is not an easy task, especially in the absence of a liquid weather derivatives market. In this study, we consider four widely used temperature models in pricing temperature-based weather derivatives. The price estimates obtained from these four models are relatively similar. However, there are large variations in their estimates with respect to changes in model parameters. To choose the most robust model, i.e., the model with smaller sensitivity with respect to errors or variation in model parameters, the global sensitivity analysis of Sobol’ is employed. An empirical investigation of the robustness of models is given using temperature data.
For the entire collection see [Zbl 1347.65003].

MSC:

91G20 Derivative securities (option pricing, hedging, etc.)
91G70 Statistical methods; risk measures
86A32 Geostatistics
Full Text: DOI

References:

[1] Alaton, P., Djehiche, B., Stillberger, D.: On modelling and pricing weather derivatives. Appl. Math. Financ. 9, 1–20 (2002) · Zbl 1013.91036 · doi:10.1080/13504860210132897
[2] Alexanderian, A., Winokur, J., Sraj, I., Srinivasan, A., Iskandarani, M., Thacker, W.C., Knio, O.M.: Global sensitivity analysis in an ocean general circulation model: a sparse spectral projection approach. Comput. Geosci. 16, 757–778 (2012) · doi:10.1007/s10596-012-9286-2
[3] Benth, F.E., Benth, J.S.: The volatility of temperature and pricing of weather derivatives. Quant. Financ. 7, 553–561 (2007) · Zbl 1151.91481 · doi:10.1080/14697680601155334
[4] Brody, D.C., Syroka, J., Zervos, M.: Dynamical pricing of weather derivatives. Quant. Financ. 3, 189–198 (2002) · doi:10.1088/1469-7688/2/3/302
[5] Campbell, S., Diebold, F.X.: Weather forecasting for weather derivatives. J. Am. Stat. Assoc. 100, 6–16 (2005) · Zbl 1117.62305 · doi:10.1198/016214504000001051
[6] Cao, M., Wei, J.: Weather derivatives valuation and market price of weather risk. J. Futur. Mark. 24, 1065–1089 (2004) · doi:10.1002/fut.20122
[7] Engle, R.F.: Autoregressive conditional heteroscedasticity with estimates of variance of united kingdom inflation. Econometrica 50, 987–1008 (1982) · Zbl 0491.62099 · doi:10.2307/1912773
[8] Göncü, A.: Pricing temperature-based weather derivatives in China. J. Risk Financ. 13, 32–44 (2011) · doi:10.1108/15265941211191921
[9] Göncü, A.: Comparison of temperature models using heating and cooling degree days futures. J. Risk Financ. 14, 159–178 (2013) · doi:10.1108/15265941311301198
[10] Hanley, M.: Hedging the force of nature. Risk Prof. 1, 21–25 (1999)
[11] Härdle, W.K., Cabrera, B.L.: The Implied Market Price of Weather Risk. Appl. Math. Financ. 19, 59–95 (2012) · Zbl 1372.91108 · doi:10.1080/1350486X.2011.591170
[12] Huang, H.-H., Shiu, Y.-M., Lin, P.-S.: HDD and CDD option pricing with market price of weather risk for Taiwan. J. Futu. Mark. 28, 790–814 (2008) · doi:10.1002/fut.20337
[13] Jewson, S.: Weather Derivative Valuation: The Meteorological, Statistical, Financial and Mathematical Foundations. Cambridge University Press, Cambridge (2005) · doi:10.1017/CBO9780511493348
[14] Kucherenko, S., Rodriguez-Fernandez, M., Pantelides, C., Shah, N.: Monte Carlo evaluation of derivative-based global sensitivity measures. Reliab. Eng. Syst. Saf. 94, 1135–1148 (2009) · doi:10.1016/j.ress.2008.05.006
[15] Kucherenko, S., Feil, B., Shah, N., Mauntz, W.: The identification of model effective dimensions using global sensitivity analysis. Reliab. Eng. Syst. Saf. 96, 440–449 (2011) · doi:10.1016/j.ress.2010.11.003
[16] Liu, R., Owen, A.: Estimating mean dimensionality of analysis of variance decompositions. J. Am. Stat. Assoc. 101, 712–721 (2006) · Zbl 1119.62343 · doi:10.1198/016214505000001410
[17] Liu, Y., Jimenez, E., Hussaini, M.Y., Ökten, G., Goodrick, S.: Parametric uncertainty quantification in the Rothermel model with randomized quasi-Monte Carlo methods. Int. J. Wildland Fire 24, 307–316 (2015) · doi:10.1071/WF13097
[18] Oetomo, T., Stevenson, M.: Hot or Cold? a comparison of different approaches to the pricing of weather derivatives. J. Emerg. Mark. Financ. 4, 101–133 (2005) · doi:10.1177/097265270500400201
[19] Ökten, G., Shah, M., Goncharov, Y.: Random and deterministic digit permutations of the Halton sequence. In: Plaskota, L., Woźniakowski, H. (eds.) 9th International Conference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing, Warsaw, Poland, August 15–20, pp. 589–602. Springer, Berlin (2012) · Zbl 1271.65047 · doi:10.1007/978-3-642-27440-4_35
[20] Platen, E., West, J.: A fair pricing approach to weather derivatives. Asian-Pac. Financ. Mark. 11, 23–53 (2005) · Zbl 1075.91024 · doi:10.1007/s10690-005-4252-9
[21] Rohmer, J., Foerster, E.: Global sensitivity analysis of large-scale numerical landslide models based on Gaussian-Process meta-modeling. Comput. Geosci. 37, 917–927 (2011) · doi:10.1016/j.cageo.2011.02.020
[22] Saltelli, A., Tarantola, S., Chan, K.P.-S.: A quantitative model-independent method for global sensitivity analysis of model output. Technometrics 41, 39–56 (1999) · doi:10.1080/00401706.1999.10485594
[23] Saltelli, A.: Making best use of model evaluations to compute sensitivity indices. Comput. Phys. Commun. 145, 80–297 (2002). doi: 10.1016/S0010-4655(02)00280-1 · Zbl 0998.65065 · doi:10.1016/S0010-4655(02)00280-1
[24] Saltelli, A.: Global Sensitivity Analysis: The Primer. Wiley, New Jersey (2008) · Zbl 1161.00304
[25] Schiller, F., Seidler, G., Wimmer, M.: Temperature models for pricing weather derivatives. Quant. Financ. 12, 489–500 (2012) · Zbl 1278.91168 · doi:10.1080/14697681003777097
[26] Sobol’, I.M.: Sensitivity estimates for non-linear mathematical models. Math. Model. Comput. Exp. 1, 407–414 (1993) · Zbl 1039.65505
[27] Sobol’, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Math. Comput. Simul. 55, 271–280 (2001). doi: 10.1016/S0378-4754(00)00270-6 · Zbl 1005.65004 · doi:10.1016/S0378-4754(00)00270-6
[28] Sobol’, I.M., Kucherenko, S.: Derivative based global sensitivity measures and their link with global sensitivity indices. Math. Comput. Simul. 79, 3009–3017 (2009) · Zbl 1167.62005 · doi:10.1016/j.matcom.2009.01.023
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.