×

Sidon-type inequalities and strong approximation by Fourier sums in multiplicative systems. (English. Russian original) Zbl 1354.42011

Sib. Math. J. 57, No. 3, 486-497 (2016); translation from Sib. Mat. Zh. 57, No. 3, 617-631 (2016).
Let \(P=\{p_n\}\) be a sequence of natural numbers betwen 2 and a fixed \(N\) and let \(G=G(P)\) denote the direct product of \(\prod_{n=1}^\infty \mathbb{Z}_{p_n}\) of integers mod \(p_n\). The subgroups \(G_n\) are defined by those \(x\in G\) whose first \(n\) coordinates are the respective identities in \(\mathbb{Z}_{p_k}\), \(k=1,\dots, n\), which have cosets \(G_n(y)=\{x\in G: x_1=y_1,\dots, x_n=y_n\}\). Set \(r_k(x)=\exp(2\pi i x_k/p_k)\) and define mutliplicative characters \(\chi_n(x)=\prod r_k^{n_k}(x)\) where \(n=\sum_{k=1}^\infty n_k m_{k-1}\), (\(m_n=p_1\cdots p_n\)) is the \(P\)-adic representation of \(n\). The Fourier coefficients \(\hat{f}(n)\) are defined by integration against characters with respect to the Haar measure on \(G\) and analogues \(D_n=\sum_{k=0}^{n-1} \chi_k\) of the Dirichlet kernel and partial sums operators \(S_nf=\sum_{k=0}^{n-1} \hat{f}(n)\, \chi_k \) are defined as usual. Also, \(\mathcal{P}_n=\{f\in L^1(G): \hat{f}_k=0, k\geq n\}\).
Define moduli of continuity of \(f\) on \(G\) by \[ (\omega_n f)_\infty=\sup_{h\in G_n}\| f(x\oplus h)-f(x)\|_\infty,\quad n\in \mathbb{Z}_+ \] and \[ (E_nf)_\infty=\inf\{\| f-t_n\|_\infty: t_n\in \mathcal{P}_n\}\, . \]
This article establishes multiplicative analogues of the following result of V. Totik [Acta Math. Acad. Sci. Hung. 35, 151–172 (1980; Zbl 0454.42001)] for Fourier series: \[ \Bigl(\frac{1}{r}\sum_{i=1}^r|(S_{k_i}^Tf)(x)-f(x)|^p\Bigr)^{1/p}=O(E_{k_1}^Tf)_\infty\log (2n/r)),\quad 0<k_1<\dots<k_r\leq n, \] and necessary and sufficient conditions for the inequality \[ \frac{1}{n}\sum_{k=n+1}^{2n}\Phi(|(S_k^Tf)(x)-f(x)|)\leq K\Phi(E_n^Tf)_\infty),\quad n\in\mathbb{N} \] to hold for every continuous \(f\). In the Fourier case the necessary and sufficient conditions are that \(\Phi(t)\leq e^{A t}\), \(0<t<\infty\), for some \(A>0\), and \(\Phi(2t)\leq A\Phi(t)\) in \((0,1)\). The sufficiency of these conditions is proved here for the case of multiplicative Fourier series. The authors also provide a certain characterization of weak differentiability using strong de la Vallée Poussin means and strong power means.

MSC:

42B05 Fourier series and coefficients in several variables

Citations:

Zbl 0454.42001
Full Text: DOI

References:

[1] Agaev G. N., Vilenkin N. Ya., Dzhafarli G. M., and Rubinshteĭn A. I., Multiplicative Systems of Functions and Harmonic Analysis on Zero-Dimensional Groups [in Russian], Élm, Baku (1981). · Zbl 0588.43001
[2] Schipp, F.; Wade, W. R.; Simon, P., Walsh Series (1990) · Zbl 0727.42017
[3] Golubov, B. I.; Efimov, A. V.; Skvortsov, V. A., Walsh Series and Transforms (1987) · Zbl 0692.42009
[4] Zelin H., “The derivatives and integrals of fractional order in Walsh-Fourier analysis with application to approximation theory,” J. Approx. Theory, 39, No. 3, 261-273 (1983). · Zbl 0523.42022
[5] Fridli S., “Integrability and <Emphasis Type=”Italic“>L1-convergence of trigonometric andWalsh series,” Ann. Univ. Sci. Budapest. Sect. Comput., 16, 149-172 (1996). · Zbl 0905.42014
[6] Móricz F. and Schipp F., “On the integrability and <Emphasis Type=”Italic“>L1-convergence of Walsh series with coefficients of bounded variation,” J. Math. Anal. Appl., 146, No. 1, 99-109 (1990). · Zbl 0693.42023 · doi:10.1016/0022-247X(90)90335-D
[7] Avdispahić M. and Pepić M., “Summability and integrability of Vilenkin series,” Collect. Math., 51, No. 3, 237-354 (2000). · Zbl 0976.42013
[8] Móricz F., “On <Emphasis Type=”Italic“>L1-convergence of Walsh-Fourier series. II,” Acta Math. Hungar., 58, No. 1-2, 203-210 (1991). · Zbl 0746.42017 · doi:10.1007/BF01903561
[9] Leindler L., Strong Approximation by Fourier Series, Akad. Kiadó, Budapest (1985). · Zbl 0588.42001
[10] Iofina T. V. and Volosivets S. S., “The strong approximation of functions by Fourier-Vilenkin series in uniform and Hölder metrics,” Analysis Theory Appl., 31, No. 1, 1-12 (2015). · Zbl 1340.41022
[11] Totik V., “On the strong approximation of Fourier series,” Acta Math. Hungar., 35, No. 1-2, 151-172 (1980). · Zbl 0454.42001 · doi:10.1007/BF01896834
[12] Totik V., “Notes of Fourier series: strong approximation,” J. Approx. Theory, 45, No. 1, 105-111 (1985). · Zbl 0558.42001 · doi:10.1016/0021-9045(85)90118-2
[13] Volosivets S. S., “Approximation of functions of bounded p-fluctuation by polynomials with respect to multiplicative systems,” Anal. Math., 21, No. 1, 61-77 (1995). · Zbl 0815.42014 · doi:10.1007/BF01904026
[14] Bari N. K., Trigonometric Series [in Russian], Fizmatgiz, Moscow (1961).
[15] Bari N. K. and Stechkin S. B., “Best approximations and differential properties of two conjugate functions,” Trudy Moskov. Mat. Obshch., 5, 483-521 (1956).
[16] Németh J., “Strong approximation and classes <Emphasis Type=”Italic“>Hω,” Colloq. Math. Soc. Janos Bolyai, 58, 537-548 (1990). · Zbl 0761.42002
[17] Bari N. K., “On best approximation of two conjugate functions by trigonometric polynomials,” Izv. Akad. Nauk SSSR Ser. Mat., 19, No. 3, 285-302 (1955). · Zbl 0065.05006
[18] Siddiqi R. N., “A note on a theorem of Alexits and Králik,” Acta Math. Hungar., 27, No. 1-1, 77-79 (1976). · Zbl 0347.42001 · doi:10.1007/BF01896760
[19] Alexits G. and Králik D., “Über die Approximation mit starken de la Vallee Poussinchen Mitteln,” Acta Math. Hungar., 16, No. 1-2, 43-49 (1965). · Zbl 0133.02602 · doi:10.1007/BF01886391
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.