×

A polynomial-type Jost solution and spectral properties of a self-adjoint quantum-difference operator. (English) Zbl 1354.39012

Summary: In this paper, we find a polynomial-type Jost solution of a self-adjoint \(q\)-difference equation of second order. Then we investigate the analytical properties and asymptotic behavior of the Jost solution. We prove that the self-adjoint operator \(L\) generated by the \(q\)-difference expression of second order has essential spectrum filling the segment \([-2\sqrt{q},2\sqrt{q}]\), \(q>1\). Finally, we examine the properties of the eigenvalues of \(L\).

MSC:

39A70 Difference operators
34L40 Particular ordinary differential operators (Dirac, one-dimensional Schrödinger, etc.)
39A12 Discrete version of topics in analysis
34L05 General spectral theory of ordinary differential operators
Full Text: DOI

References:

[1] Adıvar, M., Bairamov, E.: Spectral properties of non-selfadjoint difference operators. J. Math. Anal. Appl. 261(2), 461-478 (2001) · Zbl 0992.39018 · doi:10.1006/jmaa.2001.7532
[2] Adıvar, M., Bohner, M.: Spectral analysis of \[q\] q-difference equations with spectral singularities. Math. Comput. Model. 43(7-8), 695-703 (2006) · Zbl 1134.39018 · doi:10.1016/j.mcm.2005.04.014
[3] Adıvar, M., Bohner, M.: Spectrum and principal vectors of second order \[q\] q-difference equations. Indian J. Math. 48(1), 17-33 (2006) · Zbl 1114.39003
[4] Agarwal, R.P.: Difference equations and inequalities. Monographs and Textbooks in Pure and Applied Mathematics, vol. 228. Theory, methods, and applications, 2nd edn. Marcel Dekker, New York (2000) · Zbl 0952.39001
[5] Aygar, Y., Bairamov, E.: Jost solution and the spectral properties of the matrix-valued difference operators. Appl. Math. Comput. 218(19), 9676-9681 (2012) · Zbl 1246.39003
[6] Bairamov, E., Aygar, Y., Olgun, M.: Jost solution and the spectrum of the discrete Dirac systems. Bound. Value Probl., art. ID 306571, 11 (2010) · Zbl 1210.39003
[7] Bairamov, E., Çakar, Ö., Çelebi, A.O.: Quadratic pencil of Schrödinger operators with spectral singularities: discrete spectrum and principal functions. J. Math. Anal. Appl. 216(1), 303-320 (1997) · Zbl 0892.34077 · doi:10.1006/jmaa.1997.5689
[8] Bairamov, E., Çakar, Ö., Krall, A.M.: An eigenfunction expansion for a quadratic pencil of a Schrödinger operator with spectral singularities. J. Differ. Equ. 151(2), 268-289 (1999) · Zbl 0945.34067 · doi:10.1006/jdeq.1998.3518
[9] Bairamov, E., Çelebi, A.O.: Spectrum and spectral expansion for the non-selfadjoint discrete Dirac operators. Q. J. Math. Oxford Ser. (2) 50(200), 371-384 (1999) · Zbl 0945.47026
[10] Bairamov, E., Coskun, C.: The structure of the spectrum of a system of difference equations. Appl. Math. Lett. 18(4), 387-394 (2005) · Zbl 1082.39012 · doi:10.1016/j.aml.2004.01.009
[11] Bairamov, E., Karaman, Ö.: Spectral singularities of Klein-Gordon \[s\] s-wave equations with an integral boundary condition. Acta Math. Hung. 97(1-2), 121-131 (2002) · Zbl 1126.34379 · doi:10.1023/A:1020815113773
[12] Bohner, M., Peterson, A.: Dynamic equations on time scales. Birkhäuser, Boston (2001) (an introduction with applications) · Zbl 0978.39001
[13] Bohner, M., Guseinov, G., Peterson, A.: Introduction to the time scales calculus. In: Advances in Dynamic Equations on Time Scales, pp. 1-15. Birkhäuser, Boston (2003) · Zbl 1114.39003
[14] Chadan, K., Sabatier, P.C.: Inverse problems in quantum scattering theory. With a foreword by R. G. Newton. Texts and Monographs in Physics. Springer, New York (1977) · Zbl 0363.47006
[15] Kac, V., Cheung, P.: Quantum calculus. Universitext. Springer, New York (2002) · Zbl 0986.05001 · doi:10.1007/978-1-4613-0071-7
[16] Levitan, B.M.: Inverse Sturm-Liouville Problems. VSP, Zeist (1987) (translated from the Russian by O. Efimov) · Zbl 0749.34001
[17] Lusternik, L.A., Sobolev, V.J.: Elements of functional analysis. International Monographs on Advanced Mathematics & Physics. Hindustan, Delhi (1974) (russian edition) · Zbl 0293.46001
[18] Marchenko, V.A.: Sturm-Liouville operators and applications. Operator Theory: Advances and Applications, vol. 22. Birkhäuser, Basel (1986) (translated from the Russian by A. Iacob) · Zbl 0592.34011
[19] Naĭmark, M.A.: Investigation of the spectrum and the expansion in eigenfunctions of a non-selfadjoint differential operator of the second order on a semi-axis. Am. Math. Soc. Transl. 2(16), 103-193 (1960) · Zbl 0100.29504 · doi:10.1090/trans2/016/02
[20] Naĭmark, M.A.: Linear differential operators. Part II: Linear differential operators in Hilbert space. Frederick Ungar, New York (1968) (with additional material by the author, and a supplement by V. È. Ljance. Translated from the Russian by E. R. Dawson. English translation edited by W.N. Everitt) · Zbl 0227.34020
[21] Weyl, H.: Über beschränkte quadratische Formen, deren Differenz vollständig ist. Rend. Circ. Mat. Palermo 27(1), 373-392 (1909) · JFM 40.0395.01 · doi:10.1007/BF03019655
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.