×

Extension of Lyapunov direct method about the fractional nonautonomous systems with order lying in \((1,2)\). (English) Zbl 1354.34018

Summary: In this paper, Lyapunov direct method is employed to study the stability problem of Caputo-type fractional nonautonomous systems with order between 1 and 2. By utilizing Riemann-Liouville fractional integral, some sufficient conditions on stability are derived. In the proof of the obtained results, Bellman-Gronwall’s inequality, the generalized Bihari inequality and estimates of Mittag-Leffler functions are employed. Besides, two examples and corresponding numerical simulations are provided to show the validity and feasibility of the proposed stability criterion.

MSC:

34A08 Fractional ordinary differential equations
34D05 Asymptotic properties of solutions to ordinary differential equations
34D20 Stability of solutions to ordinary differential equations
37B55 Topological dynamics of nonautonomous systems
93D05 Lyapunov and other classical stabilities (Lagrange, Poisson, \(L^p, l^p\), etc.) in control theory
Full Text: DOI

References:

[1] Valério, D., Trujillo, J.J., Rivero, M., Machado, J.T., Baleanu, D.: Fractional calculus: a survey of useful formulas. Eur. Phys. J. Spec. Top. 222, 1827-1846 (2013) · doi:10.1140/epjst/e2013-01967-y
[2] Machado, J.T.: Fractional order description of DNA. Appl. Math. Model. 39, 4095-4102 (2015) · Zbl 1443.92142
[3] Valério, D., Machado, J., Kiryakova, V.: Some pioneers of the applications of fractional calculus. Fract. Calc. Appl. Anal. 17, 552-578 (2014) · Zbl 1305.26008 · doi:10.2478/s13540-014-0185-1
[4] Machado, J.T.: Fractional derivatives: probability interpretation and frequency response of rational approximations. Commun. Nonlinear Sci. Numer. Simul. 14, 3492-3497 (2009) · doi:10.1016/j.cnsns.2009.02.004
[5] Matignon, D.: Stability results for fractional differential equations with applications to control processing. In: Proceedings of IMACS-SMC, 2, 963-968, Lille France (1996)
[6] Qian, D., Li, C.P., Agarwal, R.P., Wong, P.J.: Stability analysis of fractional differential system with Riemann-Liouville derivative. Math. Comput. Model. 52, 862-874 (2010) · Zbl 1202.34020 · doi:10.1016/j.mcm.2010.05.016
[7] Tavazoei, M.S., Haeri, M.: A note on the stability of fractional order systems. Math. Comput. Simul. 79, 1566-1576 (2009) · Zbl 1168.34036 · doi:10.1016/j.matcom.2008.07.003
[8] Deng, W.H., Li, C.P., Lü, J.H.: Stability analysis of linear fractional differential system with multiple time delays. Nonlinear Dyn. 48, 409-416 (2007) · Zbl 1185.34115 · doi:10.1007/s11071-006-9094-0
[9] Rivero, M., Rogosin, S.V., Tenreiro Machado, J.A., Trujillo, J.J.: Stability of fractional order systems. Math. Probl. Eng. 2013, 356215 (2013). doi:10.1155/2013/356215 · Zbl 1296.93172 · doi:10.1155/2013/356215
[10] Aguila-Camacho, N., Duarte-Mermoud, M.A., Gallegos, J.A.: Lyapunov functions for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 19, 2951-2957 (2014) · Zbl 1510.34111 · doi:10.1016/j.cnsns.2014.01.022
[11] Duarte-Mermoud, M.A., Aguila-Camacho, N., Gallegos, J.A., Castro-Linares, R.: Using general quadratic Lyapunov functions to prove Lyapunov uniform stability for fractional order systems. Commun. Nonlinear Sci. Numer. Simul. 22, 650-659 (2015) · Zbl 1333.34007 · doi:10.1016/j.cnsns.2014.10.008
[12] Li, Y., Chen, Y.Q., Podlubny, I.: Mittag-Leffler stability of fractional order nonlinear dynamic systems. Automatica 45, 1965-1969 (2009) · Zbl 1185.93062 · doi:10.1016/j.automatica.2009.04.003
[13] Li, Y., Chen, Y.Q., Podlubny, I.: Stability of fractional-order nonlinear dynamic systems: Lyapunov direct method and generalized Mittag-Leffler stability. Comput. Math. Appl. 59, 1810-1821 (2010) · Zbl 1189.34015
[14] Zhang, F.R., Li, C.P., Chen, Y.Q.: Asymptotical stability of nonlinear fractional differential system with Caputo derivative. Int. J. Differ. Equ. 2011, 635165 (2011). doi:10.1155/2011/635165 · Zbl 1239.34008 · doi:10.1155/2011/635165
[15] Gorenflo, R., Mainardi, F., Moretti, D., Pagnini, G., Paradisi, P.: Fractional diffusion: probability distributions and random walk models. Phys. A 305, 106-112 (2002) · Zbl 0986.82037 · doi:10.1016/S0378-4371(01)00647-1
[16] Li, C.P., Zhao, Z.G., Chen, Y.Q.: Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion. Comput. Math. Appl. 62, 855-875 (2011) · Zbl 1228.65190 · doi:10.1016/j.camwa.2011.02.045
[17] Gafiychuk, V., Datsko, B.: Mathematical modeling of different types of instabilities in time fractional reaction-diffusion systems. Comput. Math. Appl. 59, 1101-1107 (2010) · Zbl 1189.35151 · doi:10.1016/j.camwa.2009.05.013
[18] Beghin, L., Orsingher, E.: The telegraph process stopped at stable-distributed times and its connection with the fractional telegraph equation. Fract. Calc. Appl. Anal. 6, 187-204 (2003) · Zbl 1083.60039
[19] Zhang, W., Cai, X., Holm, S.: Time-fractional heat equations and negative absolute temperatures. Comput. Math. Appl. 67, 164-171 (2014) · Zbl 1346.35223 · doi:10.1016/j.camwa.2013.11.007
[20] Chen, L.P., Chai, Y., Wu, R.C., Yang, J.: Stability and stabilization of a class of nonlinear fractional-order systems with Caputo derivative. IEEE Trans. Circuits Syst. II Express Briefs 59, 602-606 (2012) · doi:10.1109/TCSII.2012.2206936
[21] Chen, L.P., He, Y.G., Chai, Y., Wu, R.C.: New results on stability and stabilization of a class of nonlinear fractional-order systems. Nonlinear Dyn. 75, 633-641 (2014) · Zbl 1283.93138 · doi:10.1007/s11071-013-1091-5
[22] Delavari, H., Baleanu, D., Sadati, J.: Stability analysis of Caputo fractional-order nonlinear systems revisited. Nonlinear Dyn. 67, 2433-2439 (2012) · Zbl 1243.93081 · doi:10.1007/s11071-011-0157-5
[23] Podlubny, I.: Fractional Differential Equations. Academic Press, San Diego (1999) · Zbl 0924.34008
[24] Kilbas, A.A., Srivastava, H.M., Trujillo, J.J.: Theory and Application of Fractional Differential Equations. Elsevier, New York (2006) · Zbl 1092.45003
[25] Ye, H.P., Gao, J.M., Ding, Y.S.: A generalized Gronwall inequality and its application to a fractional differential equation. J. Math. Anal. Appl. 328, 1075-1081 (2007) · Zbl 1120.26003 · doi:10.1016/j.jmaa.2006.05.061
[26] Bainov, D.D., Simeonov, P.S.: Integral Inequalities and Applications. Springer, Berlin (1992) · Zbl 0759.26012 · doi:10.1007/978-94-015-8034-2
[27] Khalil, H.K.: Nonlinear Systems, 3rd edn. Prentice Hall, New Jewsey (2002) · Zbl 1003.34002
[28] Shahri, E.S.A., Alfi, A., Machado, J.T.: An extension of estimation of domain of attraction for fractional order linear system subject to saturation control. Appl. Math. Lett. 47, 26-34 (2015) · Zbl 1319.93059 · doi:10.1016/j.aml.2015.02.020
[29] De la Sen, M.: About robust stability of Caputo linear fractional dynamic systems with time delays through fixed point theory. Fixed Point Theory Appl. 2011, 867932 (2011). doi:10.1155/2011/867932 · Zbl 1219.34102 · doi:10.1155/2011/867932
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.