×

Partially blended constrained rational cubic trigonometric fractal interpolation surfaces. (English) Zbl 1354.28004

Summary: Fractal interpolation is an advance technique for visualization of scientific shaped data. In this paper, we present a new family of partially blended rational cubic trigonometric fractal interpolation surfaces (RCTFISs) with a combination of blending functions and univariate rational trigonometric fractal interpolation functions (FIFs) along the grid lines of the interpolation domain. The developed FIFs use rational trigonometric functions \(\frac {p_{i,j}(\theta)}{q_{i,j}(\theta)}\), where \(p_{i,j}(\theta)\) and \(q_{i,j}(\theta)\) are cubic trigonometric polynomials with four shape parameters. The convergence analysis of partially blended RCTFIS with the original surface data generating function is discussed. We derive sufficient data-dependent conditions on the scaling factors and shape parameters such that the fractal grid line functions lie above the grid lines of a plane {\(\Pi\)}, and consequently the proposed partially blended RCTFIS lies above the plane {\(\Pi\)}. Positivity preserving partially blended RCTFIS is a special case of the constrained partially blended RCTFIS. Numerical examples are provided to support the proposed theoretical results.

MSC:

28A80 Fractals
Full Text: DOI

References:

[1] 1. M. F. Barnsley, Fractal functions and interpolation, Constr. Approx.2 (1986) 303-329. genRefLink(16, ’S0218348X16500274BIB001’, ’10.1007
[2] 2. M. F. Barnsley, Fractals Everywhere (Academic Press Inc., 1988). · Zbl 0691.58001
[3] 3. M. F. Barnsley and A. N. Harrington, The calculus of fractal interpolation functions, J. Approx. Theory57(1) (1989) 14-34. genRefLink(16, ’S0218348X16500274BIB003’, ’10.1016
[4] 4. A. K. B. Chand and G. P. Kapoor, Generalized cubic spline fractal interpolation functions, SIAM J. Numer. Anal.44(2) (2006) 655-676. genRefLink(16, ’S0218348X16500274BIB004’, ’10.1137 · Zbl 1136.41006
[5] 5. A. K. B. Chand and P. Viswanathan, A constructive approach to cubic hermite fractal interpolation function and its constrained aspects, BIT Numer. Math.53(4) (2013) 841-865. genRefLink(16, ’S0218348X16500274BIB005’, ’10.1007
[6] 6. H. Greiner, A survey on univariate data interpolation and approximation by splines of given shape, Math. Comput. Model.15(10) (1991) 97-108. genRefLink(16, ’S0218348X16500274BIB006’, ’10.1016
[7] 7. A. K. B. Chand, N. Vijender and M. A. Navascués, Shape preservation of scientific data through rational fractal splines, Calcolo51(2) (2014) 329-362. genRefLink(16, ’S0218348X16500274BIB007’, ’10.1007
[8] 8. P. Viswanathan and A. K. B. Chand, {\(\alpha\)}-fractal rational splines for constrained interpolation, Electron. Trans. Numer. Anal.41 (2014) 420-442. genRefLink(128, ’S0218348X16500274BIB008’, ’000348498600022’); · Zbl 1312.41015
[9] 9. P. Viswanathan, A. K. B. Chand and M. A. Navascués, Fractal perturbation preserving fundamental shapes: Bounds on the scale factors, J. Math. Anal. Appl.419(2) (2014) 804-817. genRefLink(16, ’S0218348X16500274BIB009’, ’10.1016 · Zbl 1294.65018
[10] 10. A. K. B. Chand and N. Vijender, A new class of fractal interpolation surfaces based on functional values, Fractals24(1) (2016) 1-17. [Abstract] genRefLink(128, ’S0218348X16500274BIB010’, ’000372886600007’); · Zbl 1310.28005
[11] 11. P. R. Massopust, Fractal surfaces, J. Math. Anal. Appl.151(1) (1990) 275-290. genRefLink(16, ’S0218348X16500274BIB011’, ’10.1016
[12] 12. J. S. Geronimo and D. P. Hardin, Fractal interpolation functions from \(\mathbb{R}\)nm and their projections, Z. Anal. Anwend.12 (1993) 535-548. · Zbl 0777.41022
[13] 13. N. Zhao, Construction and application of fractal interpolation surfaces, Vis. Comput.12 (1996) 132-146. genRefLink(16, ’S0218348X16500274BIB013’, ’10.1007
[14] 14. H. Xie and H. Sun, The study of bivariate fractal interpolation functions and creation of fractal interpolated surfaces, Fractals5(4) (1997) 625-634. [Abstract] genRefLink(128, ’S0218348X16500274BIB014’, ’000072592800006’); · Zbl 0908.65005
[15] 15. L. Dalla, Bivariate fractal interpolation functions on grids, Fractals10(1) (2002) 53-58. [Abstract] genRefLink(128, ’S0218348X16500274BIB015’, ’000175045000007’);
[16] 16. A. K. B. Chand and G. P. Kapoor, Hidden variable bivariate fractal interpolation surfaces, Fractals11(3) (2003) 277-288. [Abstract] genRefLink(128, ’S0218348X16500274BIB016’, ’000185960300007’); · Zbl 1046.28004
[17] 17. P. Bouboulis and L. Dalla, Fractal interpolation surfaces derived from fractal interpolation functions, J. Math. Anal. Appl.336 (2007) 919-936. genRefLink(16, ’S0218348X16500274BIB017’, ’10.1016 · Zbl 1151.28008
[18] 18. P. Bouboulis, Construction of fractal surfaces via solutions of partial differential equations, SRX Math.2010 (2010) 432521. genRefLink(16, ’S0218348X16500274BIB018’, ’10.3814
[19] 19. A. K. B. Chand, Natural cubic spline coalescence hidden variable fractal interpolation surfaces, Fractals20(2) (2012) 117-131. [Abstract] genRefLink(128, ’S0218348X16500274BIB019’, ’000306165900001’); · Zbl 1250.28004
[20] 20. J. Ji and J. Peng, Analytical properties of bivariate fractal interpolation functions with vertical scaling factor functions, Int. J. Comput. Math.90(3) (2013) 539-553. genRefLink(16, ’S0218348X16500274BIB020’, ’10.1080
[21] 21. M. A. Navascués and M. V. Sebastian, Fitting fractal surfaces on non-rectangular grids, Fractals16(2) (2008) 151-158. [Abstract] genRefLink(128, ’S0218348X16500274BIB021’, ’000256700100006’); · Zbl 1166.28300
[22] 22. H. Y. Wang, Error analysis for bivariate fractal interpolation functions generated by 3-D perturbed iterated function systems, Comput. Math. Appl.56(7) (2008) 1684-1692. genRefLink(16, ’S0218348X16500274BIB022’, ’10.1016
[23] 23. X. Han, Quadratic trigonometric polynomial curves with a shape parameter, Comput. Aided Geom. Des.19(7) (2002) 503-512. genRefLink(16, ’S0218348X16500274BIB023’, ’10.1016
[24] 24. X. Han, Cubic trigonometric polynomial curves with a shape parameter, Comput. Aided Geom. Des.21 (2004) 479-502. genRefLink(16, ’S0218348X16500274BIB024’, ’10.1016
[25] 25. F. Ibraheem, M. Hussain, M. Z. Hussain and A. A. Bhatti, Positive data visualization using trigonometric function, J. Appl. Math.2012 (2012) 1-19. genRefLink(16, ’S0218348X16500274BIB025’, ’10.1155
[26] 26. U. Bashir and A. J. Md, Data visualization using rational trigonometric spline, J. Appl. Math.531497 (2013) 1-10. genRefLink(16, ’S0218348X16500274BIB026’, ’10.1155
[27] 27. M. Abbas, A. A. Majid and A. J. Md, Positivity preserving interpolation of positive data by cubic trigonometric spline, Mathematika27(1) (2011) 41-50.
[28] 28. N. Choubeya and A. Ojha, Constrained curve drawing using trigonometric splines having shape parameters, Computer-Aided Des.39 (2007) 1058-1064. genRefLink(16, ’S0218348X16500274BIB028’, ’10.1016
[29] 29. X. A. Han, Y. C. Ma and X. L. Huang, The cubic trigonometric Bézier curve with two shape parameters, Appl. Math. Lett.22 (2009) 226-231. genRefLink(16, ’S0218348X16500274BIB029’, ’10.1016 · Zbl 1163.65307
[30] 30. J. M. Peña, Shape preserving representations for trigonometric polynomial curves, Comput. Aided Geom. Des.14 (1997) 5-11. genRefLink(16, ’S0218348X16500274BIB030’, ’10.1016
[31] 31. P. Walz, Trigonometric Bézier and Stancu polynomials over intervals and triangles, Comput. Aided Geom. Des.14 (1997) 393-397. genRefLink(16, ’S0218348X16500274BIB031’, ’10.1016
[32] 32. G. Casciola and L. Romani, Rational interpolants with tension parameters, in Proceedings of Curve and Surface Design, T. Lyche, M. Mazure and L. L. Schumaker (eds.) (Saint-Malo, Nashboro Press, Brentwood, TN 2002), pp. 41-50. · Zbl 1048.65016
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.