×

Singularities with \(\mathbb{G}_m\)-action and the log minimal model program for \(\overline{\mathcal{M}}_g\). (English) Zbl 1354.14041

The log minimal model program (log MMP) on the moduli space \(\overline{\mathcal{M}}_g\) of stable genus \(g\) curves (also known as the Hassett-Keel program) can produce new birational models of \(\overline{\mathcal{M}}_g\) with modular meanings, i.e. parameterizing curves with various singularities. In this very interesting paper, the authors give a precise formulation of this modularity principle. They also define a new invariant of Gorenstein curve singularities with \(\mathbb G_m\)-action and use it to predict at which stage a singularity first arises in the log MMP. They work out a number of examples, including all ADE, toric planar, and unibranch Gorenstein singularities, and use these results to give a conjectural outline of the log MMP for \(\overline{\mathcal{M}}_g\).

MSC:

14H10 Families, moduli of curves (algebraic)
14E30 Minimal model program (Mori theory, extremal rays)
14J17 Singularities of surfaces or higher-dimensional varieties

References:

[1] Alper J., On the local quotient structure of Artin stacks, J. Pure Appl. Algebra 214 (2010), no. 9, 1576-1591.; Alper, J., On the local quotient structure of Artin stacks, J. Pure Appl. Algebra, 214, 9, 1576-1591 (2010) · Zbl 1205.14014
[2] Alper J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble) 63 (2013), no. 6, 2349-2402.; Alper, J., Good moduli spaces for Artin stacks, Ann. Inst. Fourier (Grenoble), 63, 6, 2349-2402 (2013) · Zbl 1314.14095
[3] Alper J., Fedorchuk M. and Smyth D. I., Finite Hilbert stability of (bi)canonical curves, Invent. Math. 191 (2013), no. 3, 671-718.; Alper, J.; Fedorchuk, M.; Smyth, D. I., Finite Hilbert stability of (bi)canonical curves, Invent. Math., 191, 3, 671-718 (2013) · Zbl 1276.14067
[4] Alper J., Fedorchuk M., Smyth D. I. and van der Wyck F., Log minimal model program for the moduli space of stable curves: The second flip, preprint 2013, .; Alper, J.; Fedorchuk, M.; Smyth, D. I.; van der Wyck, F., Log minimal model program for the moduli space of stable curves: The second flip (2013) · Zbl 1403.14039
[5] Altman A. and Kleiman S., Introduction to Grothendieck duality theory, Lecture Notes in Math. 146, Springer-Verlag, Berlin 1970.; Altman, A.; Kleiman, S., Introduction to Grothendieck duality theory (1970) · Zbl 0215.37201
[6] Barth W. P., Hulek K., Peters C. A. M. and Van de Ven A., Compact complex surfaces, 2nd ed., Ergeb. Math. Grenzgeb. (3) 4, Springer-Verlag, Berlin 2004.; Barth, W. P.; Hulek, K.; Peters, C. A. M.; Van de Ven, A., Compact complex surfaces (2004) · Zbl 1036.14016
[7] Bayer D. and Eisenbud D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc. 347 (1995), no. 3, 719-756.; Bayer, D.; Eisenbud, D., Ribbons and their canonical embeddings, Trans. Amer. Math. Soc., 347, 3, 719-756 (1995) · Zbl 0853.14016
[8] Brown T. C. and Shiue P. J.-S., A remark related to the Frobenius problem, Fibonacci Quart. 31 (1993), no. 1, 32-36.; Brown, T. C.; Shiue, P. J.-S., A remark related to the Frobenius problem, Fibonacci Quart., 31, 1, 32-36 (1993) · Zbl 0766.11014
[9] Buchweitz R.-O. and Greuel G.-M., The Milnor number and deformations of complex curve singularities, Invent. Math. 58 (1980), no. 3, 241-281.; Buchweitz, R.-O.; Greuel, G.-M., The Milnor number and deformations of complex curve singularities, Invent. Math., 58, 3, 241-281 (1980) · Zbl 0458.32014
[10] Casalaina-Martin S., Jensen D. and Laza R., The geometry of the ball quotient model of the moduli space of genus four curves, Compact moduli spaces and vector bundles, Contemp. Math. 564, American Mathematical Society, Providence (2012), 107-136.; Casalaina-Martin, S.; Jensen, D.; Laza, R., The geometry of the ball quotient model of the moduli space of genus four curves, Compact moduli spaces and vector bundles, 107-136 (2012) · Zbl 1260.14032
[11] Casalaina-Martin S., Jensen D. and Laza R., Log canonical models and variation of GIT for genus four canonical curves, preprint 2012, ; J. Algebraic Geom. (2014), DOI 10.1090/S1056-3911-2014-00636-6. <pub-id pub-id-type=”doi“>10.1090/S1056-3911-2014-00636-6.Casalaina-MartinS.JensenD.LazaR.2012arxiv.org/abs/1203.5014J..(2014)10.1090/S1056-3911-2014-00636-6; Casalaina-Martin, S.; Jensen, D.; Laza, R., Log canonical models and variation of GIT for genus four canonical curves (2012) · Zbl 1327.14207
[12] Casalaina-Martin S. and Laza R., Simultaneous semi-stable reduction for curves with ADE singularities, Trans. Amer. Math. Soc. 365 (2013), no. 5, 2271-2295.; Casalaina-Martin, S.; Laza, R., Simultaneous semi-stable reduction for curves with ADE singularities, Trans. Amer. Math. Soc., 365, 5, 2271-2295 (2013) · Zbl 1300.14031
[13] Delgado de la Mata F., Gorenstein curves and symmetry of the semigroup of values, Manuscripta Math. 61 (1988), no. 3, 285-296.; Delgado de la Mata, F., Gorenstein curves and symmetry of the semigroup of values, Manuscripta Math., 61, 3, 285-296 (1988) · Zbl 0692.13017
[14] Dolgachev I. V., Automorphic forms, and quasihomogeneous singularities, Funktsional. Anal. i Prilozhen. 9 (1975), no. 2, 67-68.; Dolgachev, I. V., Automorphic forms, and quasihomogeneous singularities, Funktsional. Anal. i Prilozhen., 9, 2, 67-68 (1975) · Zbl 0321.14003
[15] Dolgachev I. V. and Hu Y., Variation of geometric invariant theory quotients, Publ. Math. Inst. Hautes Études Sci. 87 (1998), 5-56.; Dolgachev, I. V.; Hu, Y., Variation of geometric invariant theory quotients, Publ. Math. Inst. Hautes Études Sci., 87, 5-56 (1998) · Zbl 1001.14018
[16] Eisenbud D., Commutative algebra, Grad. Texts in Math. 150, Springer-Verlag, New York 1995.; Eisenbud, D., Commutative algebra (1995) · Zbl 0819.13001
[17] Fedorchuk M., The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. IMRN 2012 (2012), no. 24, 5650-5672.; Fedorchuk, M., The final log canonical model of the moduli space of stable curves of genus 4, Int. Math. Res. Not. IMRN, 2012, 24, 5650-5672 (2012) · Zbl 1258.14032
[18] Fedorchuk M. and Smyth D. I., Alternate compactifications of moduli spaces of curves, Handbook of moduli. Volume I, Adv. Lect. Math. (ALM) 24, International Press, Somerville (2013), 331-414.; Fedorchuk, M.; Smyth, D. I., Alternate compactifications of moduli spaces of curves, Handbook of moduli. Volume I, 331-414 (2013) · Zbl 1322.14048
[19] Fedorchuk M. and Smyth D. I., Stability of genus five canonical curves, A celebration of algebraic geometry, Clay Math. Proc. 18, American Mathematical Society, Providence (2013), 281-310.; Fedorchuk, M.; Smyth, D. I., Stability of genus five canonical curves, A celebration of algebraic geometry, 281-310 (2013) · Zbl 1317.14061
[20] Fong L.-Y., Rational ribbons and deformation of hyperelliptic curves, J. Algebraic Geom. 2 (1993), no. 2, 295-307.; Fong, L.-Y., Rational ribbons and deformation of hyperelliptic curves, J. Algebraic Geom., 2, 2, 295-307 (1993) · Zbl 0788.14027
[21] Greuel G.-M., Martin B. and Pfister G., Numerische Charakterisierung quasihomogener Gorenstein-Kurvensingularitäten, Math. Nachr. 124 (1985), 123-131.; Greuel, G.-M.; Martin, B.; Pfister, G., Numerische Charakterisierung quasihomogener Gorenstein-Kurvensingularitäten, Math. Nachr., 124, 123-131 (1985) · Zbl 0587.14016
[22] Harris J. and Morrison I., Moduli of curves, Grad. Texts in Math. 187, Springer-Verlag, New York 1998.; Harris, J.; Morrison, I., Moduli of curves (1998) · Zbl 0913.14005
[23] Harris J. and Mumford D., On the Kodaira dimension of the moduli space of curves, Invent. Math. 67 (1982), no. 1, 23-88.; Harris, J.; Mumford, D., On the Kodaira dimension of the moduli space of curves, Invent. Math., 67, 1, 23-88 (1982) · Zbl 0506.14016
[24] Hassett B., Local stable reduction of plane curve singularities, J. reine angew. Math. 520 (2000), 169-194.; Hassett, B., Local stable reduction of plane curve singularities, J. reine angew. Math., 520, 169-194 (2000) · Zbl 0962.14019
[25] Hassett B., Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory, Progr. Math. 235, Birkhäuser-Verlag, Boston (2005), 169-192.; Hassett, B., Classical and minimal models of the moduli space of curves of genus two, Geometric methods in algebra and number theory, 169-192 (2005) · Zbl 1094.14017
[26] Hassett B. and Hyeon D., Log canonical models for the moduli space of curves: The first divisorial contraction, Trans. Amer. Math. Soc. 361 (2009), no. 8, 4471-4489.; Hassett, B.; Hyeon, D., Log canonical models for the moduli space of curves: The first divisorial contraction, Trans. Amer. Math. Soc., 361, 8, 4471-4489 (2009) · Zbl 1172.14018
[27] Hassett B. and Hyeon D., Log minimal model program for the moduli space of stable curves: The first flip, Ann. of Math. (2) 177 (2013), no. 3, 911-968.; Hassett, B.; Hyeon, D., Log minimal model program for the moduli space of stable curves: The first flip, Ann. of Math. (2), 177, 3, 911-968 (2013) · Zbl 1273.14034
[28] Hyeon D., An outline of the log minimal model program for the moduli space of curves, preprint 2010, .; Hyeon, D., An outline of the log minimal model program for the moduli space of curves (2010) · Zbl 1359.14012
[29] Hyeon D. and Lee Y., Log minimal model program for the moduli space of stable curves of genus three, Math. Res. Lett. 17 (2010), no. 4, 625-636.; Hyeon, D.; Lee, Y., Log minimal model program for the moduli space of stable curves of genus three, Math. Res. Lett., 17, 4, 625-636 (2010) · Zbl 1230.14035
[30] Hyeon D. and Morrison I., Stability of tails and 4-canonical models, Math. Res. Lett. 17 (2010), no. 4, 721-729.; Hyeon, D.; Morrison, I., Stability of tails and 4-canonical models, Math. Res. Lett., 17, 4, 721-729 (2010) · Zbl 1271.14065
[31] Kunz E., The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc. 25 (1970), 748-751.; Kunz, E., The value-semigroup of a one-dimensional Gorenstein ring, Proc. Amer. Math. Soc., 25, 748-751 (1970) · Zbl 0197.31401
[32] Morrison I., GIT constructions of moduli spaces of stable curves and maps, Geometry of Riemann surfaces and their moduli spaces, Surv. Differ. Geom. 14, International Press, Somerville (2009), 315-369.; Morrison, I., GIT constructions of moduli spaces of stable curves and maps, Geometry of Riemann surfaces and their moduli spaces, 315-369 (2009) · Zbl 1215.14026
[33] Müller F., The final log canonical model of \({\overline{M}_6} \), preprint 2013, .; Müller, F., The final log canonical model of \(#### (2013)\)
[34] Mumford D., Stability of projective varieties, Enseign. Math. (2) 23 (1977), no. 1-2, 39-110.; Mumford, D., Stability of projective varieties, Enseign. Math. (2), 23, 1-2, 39-110 (1977) · Zbl 0363.14003
[35] Olsson M., Sheaves on Artin stacks, J. reine angew. Math. 603 (2007), 55-112.; Olsson, M., Sheaves on Artin stacks, J. reine angew. Math., 603, 55-112 (2007) · Zbl 1137.14004
[36] Orlik P. and Wagreich P., Isolated singularities of algebraic surfaces with \(C{{}^{\ast}}\) action, Ann. of Math. (2) 93 (1971), 205-228.; Orlik, P.; Wagreich, P., Isolated singularities of algebraic surfaces with \(C{{}^{\ast}}\) action, Ann. of Math. (2), 93, 205-228 (1971) · Zbl 0212.53702
[37] Pinkham H. C., Normal surface singularities with \({C^*}\) action, Math. Ann. 227 (1977), no. 2, 183-193.; Pinkham, H. C., Normal surface singularities with \({C^*}\) action, Math. Ann., 227, 2, 183-193 (1977) · Zbl 0338.14010
[38] Pinkham H. C., Deformations of algebraic varieties with \({G_m}\) action, Astérisque 20, Société Mathématique de France, Paris 1974.; Pinkham, H. C., Deformations of algebraic varieties with \({G_m}\) action (1974) · Zbl 0304.14006
[39] Ramírez Alfonsín J. L., The Diophantine Frobenius problem, Oxford Lecture Ser. Math. Appl. 30, Oxford University Press, Oxford 2005.; Ramírez Alfonsín, J. L., The Diophantine Frobenius problem (2005) · Zbl 1134.11012
[40] Rødseth Ø. J., A note on T. C. Brown and P.J̇.-S. Shiue’s paper: “A remark related to the Frobenius problem”, Fibonacci Quart. 32 (1994), no. 5, 407-408.; Rødseth, Ø. J., A note on T. C. Brown and P.J̇.-S. Shiue’s paper: “A remark related to the Frobenius problem”, Fibonacci Quart., 32, 5, 407-408 (1994) · Zbl 0840.11009
[41] Saito K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math. 14 (1971), 123-142.; Saito, K., Quasihomogene isolierte Singularitäten von Hyperflächen, Invent. Math., 14, 123-142 (1971) · Zbl 0224.32011
[42] Serre J.-P., Algebraic groups and class fields, Grad. Texts in Math. 117, Springer-Verlag, New York 1988.; Serre, J.-P., Algebraic groups and class fields (1988) · Zbl 0703.14001
[43] Smyth D. I., Modular compactifications of the space of pointed elliptic curves I, Compos. Math. 147 (2011), no. 3, 877-913.; Smyth, D. I., Modular compactifications of the space of pointed elliptic curves I, Compos. Math., 147, 3, 877-913 (2011) · Zbl 1223.14031
[44] Stankova-Frenkel Z. E., Moduli of trigonal curves, J. Algebraic Geom. 9 (2000), no. 4, 607-662.; Stankova-Frenkel, Z. E., Moduli of trigonal curves, J. Algebraic Geom., 9, 4, 607-662 (2000) · Zbl 1001.14007
[45] Stevens J., On the classification of reducible curve singularities, Algebraic geometry and singularities (La Rábida 1991), Progr. Math. 134, Birkhäuser-Verlag, Basel (1996), 383-407.; Stevens, J., On the classification of reducible curve singularities, Algebraic geometry and singularities, 383-407 (1996) · Zbl 0861.14021
[46] Thaddeus M., Geometric invariant theory and flips, J. Amer. Math. Soc. 9 (1996), no. 3, 691-723.; Thaddeus, M., Geometric invariant theory and flips, J. Amer. Math. Soc., 9, 3, 691-723 (1996) · Zbl 0874.14042
[47] van der Wyck F., Moduli of singular curves and crimping, Ph.D. thesis, Harvard University, 2010.; van der Wyck, F., Moduli of singular curves and crimping (2010)
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.