×

Approximation of eigenfunctions in kernel-based spaces. (English) Zbl 1353.65139

The authors study the approximation of eigenfunctions in kernel-based spaces. They use the approximation error that is bounded in terms of generalized power functions and use determination of error-optimal \(n\)-dimensional subspaces. The authors prove that eigenspaces minimize the \(L_{2}(\Omega)\) norm of the power function. Several examples are given to illustrate the numerical technique via a greedy point selection strategy. In addition they show that the algorithm provided allows to approximate the eigenvalues for Sobelev spaces in a way that recovers the true decay rates.

MSC:

65R20 Numerical methods for integral equations
45C05 Eigenvalue problems for integral equations

Software:

rbf_qr; Matlab

References:

[1] Buhmann, M.: Radial basis functions. Acta Numerica 10, 1-38 (2000) · Zbl 1004.65015 · doi:10.1017/S0962492900000015
[2] Buhmann, M.: Radial Basis Functions, Theory and Implementations. Cambridge University Press (2003) · Zbl 1038.41001
[3] De Marchi, S., Santin, G.: A new stable basis for radial basis function interpolation. J. Comput. Appl. Math. 253, 1-13 (2013) · Zbl 1288.65013 · doi:10.1016/j.cam.2013.03.048
[4] De Marchi, S., Schaback, R., Wendland, H.: Near-optimal data-independent point locations for radial basis function interpolation. Adv. Comput. Math. 23(3), 317-330 (2005) · Zbl 1070.65008 · doi:10.1007/s10444-004-1829-1
[5] Dyn, N., Narcowich, F., Ward, J.: Variational principles and Sobolev-type estimates for generalized interpolation on a Riemannian manifold. Constr. Approx. 15(2), 174-208 (1999) · Zbl 0948.41015 · doi:10.1007/s003659900104
[6] Fasshauer, G.E., McCourt, M.J.: Stable evaluation of Gaussian radial basis function interpolants. SIAM J. Sci. Comput. 34(2), A737-A762 (2012) · Zbl 1252.65028 · doi:10.1137/110824784
[7] Fasshauer, G.F.: Meshfree Approximation Methods with MATLAB Interdisciplinary Mathematical Sciences, vol. 6. World Scientific Publishers, Singapore (2007) · Zbl 1123.65001 · doi:10.1142/6437
[8] Fornberg, B., Larsson, E., Flyer, N.: Stable computations with Gaussian radial basis functions. SIAM J. Sci. Comput. 33(2), 869-892 (2011) · Zbl 1227.65018 · doi:10.1137/09076756X
[9] Fornberg, B., Piret, C.: A stable algorithm for flat radial basis functions on a sphere. SIAM J. Sci. Comput. 30, 60-80 (2007) · Zbl 1159.65307 · doi:10.1137/060671991
[10] Ismagilov, R.: On n-dimensional diameters of compacts in a hilbert space. Funct. Anal. Appl. 2(2), 125-132 (1968) · Zbl 0179.19002 · doi:10.1007/BF01075946
[11] Jerome, J.W.: On n-widths in Sobolev spaces and applications to elliptic boundary value problems. J. Math. Anal. Appl. 29, 201-215 (1970) · Zbl 0188.43902 · doi:10.1016/0022-247X(70)90109-5
[12] Jetter, K., Stöckler, J., Ward, J.: Error estimates for scattered data interpolation on spheres. Math. Comput. 68, 733-747 (1999) · Zbl 1042.41003 · doi:10.1090/S0025-5718-99-01080-7
[13] Krasnosel’skiı̆, M.A., Vaı̆nikko, G.M., Zabreı̆ko, P.P., Rutitskii, Y.B., Stetsenko, V.Y.: Approximate Solution of Operator Equations. Wolters-Noordhoff Publishing, Groningen (1972). Translated from the Russian by D. Louvish · Zbl 0231.41024 · doi:10.1007/978-94-010-2715-1
[14] Mouattamid, M., Schaback, R.: Recursive kernels. Anal. Theory Appl. 25 (4), 301-316 (2009) · Zbl 1212.46053 · doi:10.1007/s10496-009-0301-y
[15] Müller, S., Schaback, R.: A Newton basis for kernel spaces. J. Approx. Theory 161(2), 645-655 (2009) · Zbl 1185.41004 · doi:10.1016/j.jat.2008.10.014
[16] Narcowich, F.J., Schaback, R., Ward, J.D.: Approximations in Sobolev spaces by kernel expansions. J. Approx. Theory 114(1), 70-83 (2002) · Zbl 1022.46023 · doi:10.1006/jath.2001.3637
[17] Novak, E., Woźniakowski, H.: Tractability of multivariate problems. Vol. 1: Linear information EMS Tracts in Mathematics, vol. 6. European Mathematical Society (EMS), Zürich (2008) · Zbl 1156.65001 · doi:10.4171/026
[18] Pazouki, M., Schaback, R.: Bases for kernel-based spaces. J. Comput. Appl. Math. 236(4), 575-588 (2011) · Zbl 1234.41003 · doi:10.1016/j.cam.2011.05.021
[19] Pinkus, A.: n-Widths in Approximation Theory Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 7. Springer-Verlag, Berlin (1985) · Zbl 0551.41001
[20] Pogorzelski, W.; Schorr-Con, JJ (ed.); Kacner, A. (ed.); Olesiak, Z. (ed.), Integral equations and their applications, vol. I (1966), Oxford · Zbl 0137.30502
[21] Schaback, R.: Error estimates and condition numbers for radial basis function interpolation. Adv. Comput. Math. 3(3), 251-264 (1995) · Zbl 0861.65007 · doi:10.1007/BF02432002
[22] Schaback, R.: Native Hilbert spaces for radial basis functions I. In: Buhmann, M., Mache, D.H., Felten, M., Müller, M. (eds.) New Developments in Approximation Theory, number 132 in International Series of Numerical Mathematics, pp. 255-282. Birkhäuser Verlag (1999) · Zbl 0944.46017
[23] Schaback, R., Wendland, H.: Approximation by positive definite kernels. In: Buhmann, M., Mache, D. (eds.) Advanced Problems in Constructive Approximation, volume 142 of International Series in Numerical Mathematics, pp. 203-221 (2002) · Zbl 1046.41011
[24] Schaback, R., Wendland, H.: Inverse and saturation theorems for radial basis function interpolation. Math. Comp. 71(238), 669-681 (electronic) (2002) · Zbl 0989.41002 · doi:10.1090/S0025-5718-01-01383-7
[25] Schaback, R., Wendland, H.: Kernel techniques: from machine learning to meshless methods. Acta Numerica 15, 543-639 (2006) · Zbl 1111.65108 · doi:10.1017/S0962492906270016
[26] Sun, H., Wu, Q.: Application of integral operator for regularized least-square regression. Math. Comput. Modelling 49(1-2), 276-285 (2009) · Zbl 1165.45310 · doi:10.1016/j.mcm.2008.08.005
[27] Wendland, H.: Scattered Data Approximation Cambridge Monographs on Applied and Computational Mathematics, vol. 17. Cambridge University Press, Cambridge (2005) · Zbl 1075.65021
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.