×

Mosaic-skeleton method as applied to the numerical solution of three-dimensional Dirichlet problems for the Helmholtz equation in integral form. (English. Russian original) Zbl 1353.65130

Comput. Math. Math. Phys. 56, No. 4, 612-625 (2016); translation from Zh. Vychisl. Mat. Mat. Fiz. 56, No. 4, 625-638 (2016).
The numerical solution of interior and exterior Helmholtz problems with Dirichlet boundary condition is considered in three dimensions. The problem at hand is reformulated as a first kind boundary integral equation which is approximated by a system of linear algebraic equations. This system is solved numerically by the iteration method. To speed up the solution procedure, the mosaic-skeleton method is used.

MSC:

65N38 Boundary element methods for boundary value problems involving PDEs
35J05 Laplace operator, Helmholtz equation (reduced wave equation), Poisson equation
65F10 Iterative numerical methods for linear systems
Full Text: DOI

References:

[1] A. A. Kashirin and S. I. Smagin, “Potential-based numerical solution of Dirichlet problems for the Helmholtz equation”, Comput. Math. Math. Phys. 52 (8), 1173-1185 2012. · Zbl 1274.35065
[2] S. I. Smagin, “Numerical solution of an integral equation of the first kind with a weak singularity for the density of a single layer potential,” USSR Comput. Math. Math. Phys. 28 (6), 41-49 1988. · Zbl 0698.65087 · doi:10.1016/0041-5553(88)90040-7
[3] A. A. Kashirin and S. I. Smagin, “On numerical solution of integral equations for three-dimensional diffraction problems,” Lect. Notes Comput. Sci. 6083, 11-19 2010. · doi:10.1007/978-3-642-14822-4_2
[4] A. A. Kashirin, “Conditionally correct integral equations and numerical solution of stationary problems of acoustic wave diffraction,” Vestn. Tikhookeansk. Gos. Univ., No. 3, 33-40 2012 [in Russian].
[5] J. T. Beale, “A grid-based boundary integral method for elliptic problems in three dimensions,” SIAM J. Numer. Anal. 42 (2), 599-620 2004. · Zbl 1159.65368 · doi:10.1137/S0036142903420959
[6] Y. Saad and M. Schultz, “GMRES: A general minimal residual algorithm for solving nonsymmetric linear systems,” SIAM J. Sci. Stat. Comput. 7 (3), 856-869 1986. · Zbl 0599.65018 · doi:10.1137/0907058
[7] V. Rokhlin, “Rapid solution of integral equations of classic potential theory,” J. Comput. Phys. 60 (2), 187-207 1985. · Zbl 0629.65122 · doi:10.1016/0021-9991(85)90002-6
[8] W. Hackbush and Z. P. Novak, “On the fast matrix multiplication in the boundary element method by panel clustering,” Numer. Math. 54 (4), 463-492 1989. · Zbl 0641.65038 · doi:10.1007/BF01396324
[9] G. Beylkin, R. Coifman, and V. Rokhlin, “Fast wavelet transform and numerical algorithms I,” Commun. Pure Appl. Math. 44 (2), 141-183 1991. · Zbl 0722.65022 · doi:10.1002/cpa.3160440202
[10] A. Brandt and A. A. Lubrecht, “Multilevel matrix multiplication and fast solution of integral equations,” J. Comput. Phys. 90 (2), 348-370 1990. · Zbl 0707.65025 · doi:10.1016/0021-9991(90)90171-V
[11] E. E. Tyrtyshnikov, “Mosaic-skeleton approximations,” Calcolo 33 (1-2), 47-57 (1996). · Zbl 0906.65048 · doi:10.1007/BF02575706
[12] Tyrtyshnikov, E. E., Fast multiplication methods and solving equations, 4-41 (1999), Moscow
[13] E. E. Tyrtyshnikov, Matrix Approximations and Cost-Effective Matrix-Vector Multiplication (Inst. Vychisl. Mat. Ross. Akad. Nauk, Moscow, 1993) [in Russian].
[14] D. V. Savost’yanov, Candidate’s Dissertation in Mathematics and Physics (Moscow, 2006).
[15] S. A. Goreinov, N. L. Zamarashkin, and E. E. Tyrtyshnikov, “Pseudo-skeleton approximations of matrices,” Dokl. Akad. Nauk 343 (2), 151-152 1995. · Zbl 0875.15004
[16] S. A. Goreinov, E. E. Tyrtyshnikov, and N. L. Zamarashkin, “A theory of pseudo-skeleton approximations,” Linear Algebra Appl. 261, 1-21 1997. · Zbl 0877.65021 · doi:10.1016/S0024-3795(96)00301-1
[17] Goreinov, S. A., Mosaic-skeleton approximations of matrices generated by asymptotically smooth and oscillatory kernels, 42-76 (1999), Moscow
[18] E. E. Tyrtyshnikov, “Incomplete cross approximations in the mosaic-skeleton method,” Computing. 64 (4), 367-380 2000. · Zbl 0964.65048 · doi:10.1007/s006070070031
[19] Aparinov, A. A., On application of the mosaic-skeleton approximation method for velocity field computation in unbounded 2D vortex flows, 6-12 (2008), Orel
[20] Oseledets, I. V.; Savost’yanov, D. V.; Stavtsev, S. L., Applications of nonlinear approximation methods for fast computation of sound propagation in a shallow sea, 171-192 (2004), Moscow
[21] A. A. Aparinov and A. V. Setukha, “Application of mosaic-skeleton approximations in the simulation of threedimensional vortex flows by vortex segments,” Comput. Math. Math. Phys. 50 (5), 890-899 2010. · Zbl 1224.76024 · doi:10.1134/S096554251005012X
[22] Stavtsev, S. L.; Tyrtyshnikov, E. E., Application of mosaic-skeleton approximations for solving EFIE, 1752-1755 (2009)
[23] Savost’yanov, D. V.; Stavtsev, S. L.; Tyrtyshnikov, E. E., On the use of mosaic-skeleton approximations for solving hypersingular integral equations, 225-244 (2008), Moscow
[24] W. McLean, Strongly Elliptic Systems and Boundary Integral Equations (Cambridge Univ. Press, Cambridge, 2000). · Zbl 0948.35001
[25] M. Bebendorf, “Approximation of boundary element matrices,” Numer. Math. 86 (4), 565-589 2000. · Zbl 0966.65094 · doi:10.1007/PL00005410
[26] C. D. Meyer, Matrix Analysis and Applied Linear Algebra (SIAM, Philadelphia, PA, 2000). · Zbl 0962.15001 · doi:10.1137/1.9780898719512
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.