×

Fractional elliptic operators from a generalized Glaeske-Kilbas-Saigo-Mellin transform. (English) Zbl 1353.58014

Summary: We show that the deformation of the canonical spectral triples over the \(n\)-dimensional torus which is characterized by a conjectured elliptic operator \(\mathrm D_\beta={\kern-0.8pt\not\kern0.8pt D}(1+|{\kern-0.8pt\not\kern0.8pt D}|^2)^{-\beta}=\frac{1}{\Gamma(\beta)}\int^\infty_0 \tau^{\beta-1} e^{-\tau(1+{\kern-1.8pt\not\kern2.8pt D}^2)} {\kern-0.8pt\not\kern0.8pt D} d\tau\) with \(\beta \geq 0\) and by a discrete dimension spectrum with fractional values less than \(n\) may be obtained if the elliptic operator is defined by means of the fractional Glaeske-Kilbas-Saigo-Mellin transform.

MSC:

58J50 Spectral problems; spectral geometry; scattering theory on manifolds
26A33 Fractional derivatives and integrals

References:

[1] M. Abramowitz, I. A. Stegun, eds. (1965), ”Chapter 13”, Handbook of Mathematical Functions with Formulas, Graphs, and Mathematical Tables, New York: Dover, pp. 504, ISBN 978-0486612720, MR0167642.
[2] G. E. Andrews, R. Askey, R. Roy, (2000). Special functions. placePlaceNameCambridge PlaceTypeUniversity Press . · Zbl 1075.33500
[3] M. Atiyah, Eigenvalues of the Dirac operator, Lect. Notes in Math. Vol. 1111, (1985) 251-260. · Zbl 0568.53022
[4] B. Bonilla, A. A. Kilbas, M. Rivero, L. Rodriguez, J. J. Trujillo, Modified Bessel-type function and solution of differential and integral equations, Indian J. Pure Appl. Math. 31(1), (2000) 93-109. · Zbl 1122.33300
[5] B. Bonilla, A. A. Kilbas, M. Rivero, L. Rodriguez, J. J. Trujillo, Modified Bessel-type function and solution of differential and integral equations, Indian J. Pure Appl. Math. 31(1), (2000) 93-109. · Zbl 1122.33300
[6] G. Calcagni, Geometry and field theory in multi-fractional spacetime, JHEP01, (2012) 065-147. · Zbl 1306.83018
[7] G. Calcagni, Fractal universe and quantum gravity, Phys. Rev. Lett. 104, 251301-251305.
[8] J. Collins, Renormalization, placePlaceNameCambridge PlaceTypeUniv. Press (1984).
[9] A. Connes, Noncommutative Geometry, Academic Press, CityLondon and placeCitySan Diego (1994).
[10] R. A. El-Nabulsi, G.-c. Wu, Fractional complexified field theory from Saxena-Kumbhat fractional integral, fractional derivative of order ({\(\alpha\)}, {\(\beta\)})and dynamical fractional integral exponent, Afric. Disp. J. Math. 13, No. 2 (2012) 45-61. · Zbl 1267.49037
[11] R. A. El-Nabulsi, Glaeske-Kilbas-Saigo fractional integration and fractional Dixmier trace, Acta Math. Viet. 37, 2, (2012) 149-160. · Zbl 1254.26013
[12] S. El-Showk, M. Paulos, D. Poland, placeS. Rychkov, D. Simmons-Duffin, A. Vichi, Conformal field theories in fractional dimensions, Phys. Rev. Lett. 112, (2014) 141601-141605. · Zbl 1310.82013
[13] E. Goldfain, Fractional dynamics and the standard model for particle physics, Comm. Nonlinear Sci. Numer. Simul. 13 (2008) 1397-1404. · Zbl 1221.81175
[14] E. Goldfain, Fractional dynamics and the TeV regime of field theory particle, Comm. Nonlinear Sci. Numer. Simul. 13 (2008) 666-676. · Zbl 1129.81367
[15] R. Herrmann, Gauge invariance in fractional field theories, Phys. Lett. A372, (2008) 5515-5522. · Zbl 1223.70062
[16] R. Herrmann, Fractional Calculus-An Introduction for Physicists, World Scientific, country-regionplaceSingapore (2011), ISBN: 9789814340243.
[17] R. Herrmann, Uniqueness of the fractional derivative definition, arXiv: 1303.2939.
[18] A. A. Kilbas, J. J. Trujillo, Computation of fractional integrals via functions of hypergeometric and Bessel type, J. Comp. Appl. Math. 118 (2000) 223-239. · Zbl 0966.65022
[19] B. Mandelbrot, The Fractal Geometry of Nature, W.H. Freeman and Company, ISBN 0-7167-1186-9, San-Francisco (1982).
[20] S. I. Muslih, O. P. Agrawal, D. Baleanu, Solutions of a fractional Dirac equation, Proceedings of the ASME (2009) International Design Engineering Technical Conferences & Computers and Information in Engineering Conference IDETC/CIE 2009 August 30 - September 2, 2009, San Diego, California, USA.
[21] S. I. Muslih, O. P. Agrawal, D. Baleanu, A fractional Dirac equation and its solution, J. Phys. A: Math. Theor. 45, (2010) 055203055213. · Zbl 1185.81078
[22] A. Raspini, Dirac equation with fractional derivatives of order 2/3, Fiz. B9, No. 2, (2000) 49-54.
[23] A. Raspini., Simple solution of the fractional Dirac equation of order 2/3. Phys. Scrip. 64, (2001) 20-22. · Zbl 1061.81518
[24] R. Trinchero, Scalar field on non-integer dimensional spaces, Int. J. Geom. Meth. Mod. Phys. 09, (2012) 1250070-1250086. · Zbl 1268.46045
[25] K. G. Wilson, M. E. Fisher, Critical exponents in 3.99 dimensions, Phys. Rev. Lett. 28, (1972) 240-243.
[26] K. G. Wilson, Quantum field theory models in less than four-dimensions, Phys. Rev. D7 (1973), 2911-2926.
This reference list is based on information provided by the publisher or from digital mathematics libraries. Its items are heuristically matched to zbMATH identifiers and may contain data conversion errors. In some cases that data have been complemented/enhanced by data from zbMATH Open. This attempts to reflect the references listed in the original paper as accurately as possible without claiming completeness or a perfect matching.